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PREFACE

This report describes part of a comprehensive and continuing program of re-

search in multispectral remote sensing of the environment from aircraft and sat-

ellites. The research is being carried out for NASA's Lyndon B. Johnson Space

Center, Houston, Texas, by the Environmental Research Institute of Michigan

(ERIM)--formerly the Willow Run Laboratories of The University of Michigan's

Institute of Science and Technology. The overall objective of this program is to

develop remote sensing as a practical tool for obtaining extensive environmental

information quickly and economically.

Usually, remote sensing has been used to extract information only over

limited areas and during times involving essentially similar conditions; it also

has been restricted to a few selected types of terrain, most commonly agricultural

areas. Yet, the need to economically extract information from ever-widening areas

requires accurate recognition using remote sensing data, which, of necessity, will

be collected at differing times. Examples of applications requiring wide-area

collection of information include agricultural census taking, crop yield, detection

of diseased plants, surveys and studies of air and water pollution, forest manage-

ment, and general assessment of land-use patterns to permit land-use planning on

a large scale. Further, many envisioned applications require more detailed in-

formation than is now available from customary multispectral data, whether col-

lected by aircraft or satellites.

The work described in this report first deals with the problems of multispec-

tral remote sensing under varying conditions and then those of improving discrimina-

tion by adding supplementary geometrical information from multiple viewing angles,

or "aspects."

Variations induced in multispectral signals by different times of day, by dis-

similar scan angles, and by atmospheric and bidirectional reflectance contribu-

tions are studied in detail and compared with the predictions of theoretical models

to determine to what extent these models can predict the effects of changing condi-

tions. Tests are made on the degradation of classification performance because of

changing conditions.

Secondly, the use of a multi-aspect scanner is introduced. Data collected over

both agricultural and forestry areas are analyzed to determine how much the addi-

CiiiED PAGE AN N

• RECEDING PAGE BLANK NOT FILMED



RIM FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

tional geometrical information thus provided can improve both discrimination and

extraction of other information.

The research covered in this report was performed under Contract NAS 9-

9784, Task VI, and covers the period from 1 February through 31 October 1973.

Dr. Andrew Potter served as Technical Monitor. The program was directed by

R. R. Legault, a Vice-President of ERIM, by J. D. Erickson, Principal Investi-

gator and Head of the Information Systems and Analysis Department, and R. F.

Nalepka, Head of the Multispectral Analysis Section. The authors acknowledge the

contribution of Tim Gregg in preparing Appendix B. The ERIM number of this re-

port is 190100-27-T.
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ANALYSIS OF MULTISPECTRAL SIGNATURES AND INVESTIGATION
OF MULTI-ASPECT REMOTE SENSING TECHNIQUES

1

SUMMARY AND INTRODUCTION

Visible and infrared radiation reaching multispectral scanners contains spectral, spatial,
and temporal information by which computers can recognize the surface materials present in
individual spatial resolution elements and extract other types of scene information. The first
of two major sections in this report describes investigation of some limiting factors of special
importance in the machine processing of remotely sensed data from airborne multispectral

scanners. The major factor is time-of-day change in average signals from each class caused
by changes in overall irradiance and solar angles. Another important factor is scan-angle-
related variation that depends on both the amount of haze present in the atmosphere and the
viewing and illumination geometries. The second major section introduces multi-aspect remote
sensing, a new concept in remote sensing with scanners, and explores its use for improved clas-
sification accuracy and information extraction.

The first major section, entitled "Multispectral Signature Analysis," considers systematic
variations in multispectral scanner signatures (a signature, in this context, is a statistical de-
scription of scanner signals from a crop or some other ground cover). Variations associated
with time of day and scan angle were studied both empirically and theoretically. Such variations
present problems for many types of multispectral-data-processing techniques and procedures.
Our empirical analysis was of a uniquely suited data set providing repeated data throughout the
day (6 August 1971) over an agricultural area in Michigan. Six of 14 passes flown over the same
flight line from 9:33 AM to 2:50 PM Local Solar Time were analyzed for time-of-day and scan-
angle effects. Theoretical signal predictions obtained with a radiative transfer model for
Lambertian (perfectly diffuse) surface reflectors were compared with the empirical data; some
limited comparisons also were made with a different model developed at ERIM that predicts
bidirectional surface reflectances. The multispectral scanner channels analyzed extend from
0.46m (the visible blue) to 12.0pm (the thermal infrared). In discussing the theoretical radia-
tive transfer model calculations, reference will be made to both "shorter" wavelengths (i.e.,
X < 0.6pm) and "longer" wavelengths (0.6 < A < 1.0pm), which together comprise a major por-
tion of the reflective spectral region.

Major conclusions of the signature analysis investigation are as follows.

(1) Time-of-day effects in airborne scanner data are appreciable and cannot be ignored
in the processing of large-area survey data, according to tests made to quantify the amount of
degradation they produce in classification results.

1



LR IM FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

(2) A theoretical radiative transfer model for Lambertian surfaces is capable of predict-

ing time-of-day trends in reflective signals, as well as scan angle effects for the shorter wave-

lengths at which the atmosphere is a large contributor to scan-angle-dependent variations.

(3) Surface bidirectional effects at the longer wavelengths are thought to be the reason

empirical data depart from the model predictions; calculations with a separate bidirectional

reflectance model indicated the approximately correct curve shape, even though the param-

eters used did not closely match those of the empirical data.

The second major section of the present report is more specific in its focus. It explores

for the first time a new data collection procedure, namely, multi-aspect data collection, as

well as the use of data so collected for improved information extraction. The M-7 multispectral

scanner installation in the ERIM C-47 aircraft was modified so the scanner could be tilted to

view the ground ahead of the aircraft on repeated passes over a flight line. Multi-aspect data

collected over an agricultural area on a standard (no-tilt) pass and on a subsequent 450-tilt

pass over the same area were registered spatially and subjected to classification procedures.

Related theoretical parametric studies were undertaken with a bidirectional reflectance model

for crop canopys in order to explore the effects of plant density, plant vigor, tassels, and soil

color on the multi-aspect reflectances of corn canopies. Finally, the canopy reflectance model

was used to examine the relationships between the physical characteristics of a leafless decid-

uous forest (with snow covered ground) and the reflectances that would be observed during

multi-aspect scanner passes.

Major conclusions of the multi-aspect investigation are as follows:

(1) Multi-aspect data may offer improved classification performance over that obtainable

with conventional multispectral scanner data.

(2) Theoretical reflectance calculations for corn canopies under viewing conditions

similar to those of the multi-aspect agricultural data show that reduced size (due to stress)

and chlorosis of leaves, taken together, produce the most significant differences in reflectance

as compared to mature healthy corn. Soil color becomes important only when the planting

density is low, in which case it can have a substantial effect. Tassel effects were found to be

discernible in multi-aspect data.

(3) The feasibility of extracting forest stand information (such as stand volume) from

multi-aspect data was neither established nor rejected-in large part because the study was

not completed. Encouraging progress was made, however, and trends predicted by theoretical

reflectance modeling were found in the empirical data for one forest stand.

2
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2
MULTISPECTRAL SIGNATURE ANALYSIS

If correct decisions are to be made in computer recognition processing, the multispectral

signatures used in decision rules for discriminating between various material classes should

accurately represent those classes. Because radiance signals (and hence, signatures) from a

scene can vary in a number of ways for a variety of reasons, it is important to understand the

nature of such variations and their causes.

A major objective of the work here reported was to investigate and determine systematic

(as opposed to random) temporal (time-of-day) variations of signatures-and methods for pre-

dicting them-so that spectral pattern recognition procedures can be improved and better re-

sults obtained. Another objective was to determine how accurately variations associated with

scan angle could be predicted. The testing and application of techniques for extending signa-

tures by removing or compensating for systematic effects, such as those studied here, fell

within the scope of other tasks under this contract [1, 2].

Appreciable variations in signatures at different times of day and at different scan angles

were observed in empirical multispectral scanner data over an agricultural area. Classifica-

tion tests on data from the same fields at successive times of day both quantified how rapidly

recognition can degrade when fixed signatures are used and demonstrated that time-of-day

trends in signals cannot be ignored.

Variations in signature means were analyzed both qualitatively and quantitatively, as a

function of both time of day and scan angle, for a variety of ground cover types and a repre-

sentative set of channels. Comparison of observed variations in the empirical data with the

predictions of a radiative transfer model developed at ERIM by Dr. Robert E. Turner [31

shows the following: (1) the model is able to predict the trend of the short-wavelength data as

a function of time of day and, less accurately, as a function of scan angle; (2) there are some

residual discrepancies not accounted for by the model. Empirical analysis is also made of

data in the thermal channel.

This in-depth study is unique in the extent of its direct comparisons, on matching graphs,

between empirical data and theoretical predictions of variations; these comparisons are made

in more detail for more times, fields, and ground covers and wavebands than in any other

treatment of the subject we have seen. The extent of the analysis was made possible by the

unique data set used: it was obtained in 14 successive passes over the same ground-truthed

strip at different times on the same day. Previous time-of-day studies have compared only

data taken over the same area during a few passes on one day, over different areas on the

same day, or over different areas on different days. In contrast to these compromises, the

availability of repeated data for identical fields, at the same scan angles and on the same day,

eliminates many extraneous sources of data variation.
3
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This data set was collected on 6 August 1971, in Ingham County, Michigan, near the time

of maturity for most crops. A series of north-south passes was made at a 1.52-km altitude

(5000 ft) over a single 11-km (7-mi) flight line at various times of day from 147 minutes before

local solar noon to 170 minutes after. The area covered was primarily agricultural and con-

tained 147 usable fields with 10 different crops (plus woods). Since it was entirely ground-

truthed, the area provided abundant data for detailed analyses.

2.1 EMPIRICAL DATA PROCESSING

Data for six passes from the Ingham County flights made on 6 August 1971 were chosen

to be digitized and processed for the temporal study; the same data also were analyzed in

terms of scan angle, ground cover, and wavelength. The spectral channels available for

analysis are listed in Table 1. Table 1 also lists flight times, corresponding local solar

times, sun positions, and minutes between runs.

The first four runs were selected from among 12 recorded during the morning mission
and are spaced approximately equally in time. The remaining eight morning run recordings

(four between the first two and four between the third and fourth) are available for future
analysis to obtain additional information about short-term run-to-run variations. No other
afternoon mission runs were made along the flight line.

Noise was reduced during digitization by averaging over sets of eight scan lines which were

partially redundant in the 1.52-km altitude (5000-ft) scanner signals. Some electronic filtering

of the analog signals effectively combined two optical resolution elements along the scan line into

each digitized sample; 160 video samples per scan line were taken. The signals were dynami-

cally clamped to the dark level (i.e., that signal level obtained when the optics view the unillumi-

nated interior structure of the scanner). Since the flight log indicates that the operator occa-

sionally made gain changes between runs to keep the signals within the dynamic range of the

recording system, appropriate coarse scaling factors were applied during data preparation to

compensate for all such discrete gain changes between runs. Reference signals from an internal

calibration lamp, from the sun and skylight irradiance sensor (hereinafter called the "sun

sensor") and from thermal sources were retained on the tapes for later use.

Over 140 ground-truthed fields and forest plots were delineated on line-printer graymaps
for the 10:10 EST run, and identifying line and point numbers were extracted. To provide a
check on the accuracy of these delineations, we used a computer program (ADCHAN) developed
for this work that, with a map program, allows the production of another map with the same
gray tone symbols except that all points of the designated fields are over-printed in color with
a letter denoting the ground cover type. This map permitted a rapid check of the delineation
operation and reduced chances of human error.

4



TABLE 1. INGHAM COUNTY RUNS DIGITIZED FOR TIME-OF-DAY STUDY. Data Collected on 6 August 1971.

Eastern Standard Local Solar Minutes Difference
Time (EST) at Time (LST) from Local Minutes Between Solar Solar from 1800 (South)
Middle of Run* (84.420 W Longitude) Solar Noon Runs Elevation (o) Azimuth (o) Solar Azimuth (0)

10:10 9:33 -147 34 49.3 117.7 -62.3

10:45 10:07 -113 48 54.6 127.9 -52.1

11:32 10:55 -65 38 60.5 145.8 -34.2

12:10 11:33 -27 143 63.6 164.7 -15.3

14:33 13:56 116 54 54.5 232.1 52.1

15:27 14:50 170 45.8 247.4 67.4

*For all runs the following M-7 scanner channels were used:

Digital 10%
Number Passband (Mm)

1** 0.46-0.49
2 0.48-0.51
3 0.50 -0.54
4** 0.52-0.57
5 0.54 -0.60
6 0.58-0.65
7* 0.61-0.70
8** 0.72-0.92
9 1.0-1.4

10 1.5-1.8
11 2.0-2.6
12** 9.3 -11.7

**Used in intensive field-
mean study. o

Z
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Since hand-delineation of field boundaries on graymaps is a time-consuming and error-

prone process, a computer-aided method was used to transform the field delineations from

the first run to each of the other runs. Here, computer programs, developed this year under

ERTS investigations [4, 5] to transform field coordinates from USGS maps or high-altitude

aerial photography to digitized multispectral scanner data, were adapted for use. Precise

spatial registration of the data set points was not undertaken. The spatial resolution of the

aircraft data was fine enough, in comparison to field sizes, that errors in the location of field

boundaries (up to several 25 -ft image elements) were made acceptable by moving the field

delineations in from the field boundaries.

In contrast to the first-order transformation usable for portions of ERTS frames, a qua-
dratic transformation was found necessary in the Ingham County aircraft data and, in addition,
the seven-mile-long run had to be broken into three sections. The break points were deter-
mined from marked discontinuities in a plot of the errors in the line numbers along the flight
path given by a preliminary linear transformation applied to the entire length. The approach
taken gave better results than did a single higher-order fit to the same 20 to 28 reference
points over the entire length. Errors along the scan line were usually less than two to four
resolution elements (acceptable on almost all fields), but some errors along the flight path
amounted to as many as ten resolution elements over short stretches. The accuracy of the
new field delineations was verified on one of the two-color digital maps described above, and
detected errors were corrected manually. The computer-aided procedure saved only a modest
amount of human time compared to delineating the fields by hand on each new run; its primary
worth was in reducing the number of human errors made in recording and handling the
delineations.

The individual fields were divided into subfields, each lying entirely within one of seven
contiguous, non-overlapping ranges of scan angles. Comparing subfields within the same scan
angle range allows the effects of scan angle variations to be minimized; it also allows study of
the data as a function of scan angle per se (i.e., with scan angle as an independent parameter).
A small computer program was written to take as input the initial field delineation cards for
whole fields and to then punch cards for a larger number of subfields broken up into different
scan angles. One initial whole field might overlap three or four scan angle ranges, in which
case it would be divided into three or four subfields. Since the end of a field sliced off by a
division in scan angles might be too small to give a reliable subfield mean, a lower bound of
ten pixels was set for accepting any subfield.

These data were analyzed both by direct examination of field signal means and by classifica-
tion tests, which are discussed later in Section 2.3. For the signal mean comparisons discussed
in Sections 2.3 and 2.4, graphs were plotted using The University of Michigan's Interactive Data

6
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Analysis System, a program available on the campus IBM 360/67 computer. The dependent
variables plotted on the vertical scale are as follows:

(1) Total radiance (derived from the subfield means)

(2) Total downward irradiance at 1.52 km (5000 ft) (supplied by the sky sensor as a func-
tion of time of day only, there being no scan angle and crop dependence)

Of the four available parameters, the following levels were used in all data processing and
graphing:

(1) Time of day (six levels)*

EST LST (Local Solar Time)

10:10 9:33

10:45 10:07

11:32 10:55

12:10 11:33

14:33 13:56

15:27 14:50

(2) Scan angle (seven levels)

The -280 to +280 range of scan angles was broken into seven ranges, with nominal central
scan angles of -240, -160, -90, 00, +90, +160, +240 (using negative scan angles to denote the
western side on both north- and south-bound flights). As discussed above, statistics were ex-
tracted from those parts of the fields lying within each range of scan angles. Since the ranges
were chosen to include approximately equal numbers of pixels within each range along the
scan lines, they include more degrees of angle around nadir. The ranges are approximate and
were varied slightly from run to run (by less than one range total) to include about the same
ground area in each. The plane did not follow exactly the same flight path each time, but it
was felt that the changes made in scan angle would introduce less variation in the data than
using different fields.

(3) Channels (five levels)

Channel # Band Wavelengths (A m)

1 046 - 0.49

4 0.52 - 0.57

7 0.61 - 0.70

8 0.72 - 0.92

12 9.3 - 11.7

See Table 1.
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(4) Ground covers (up to 11 cases, some not always available)

(a) NS Corn (north-south row direction)

(b) EW Corn (east-west row direction)

(c) Pasture

(d) Trees

(e) Oats

(f) Hay

(g) Soybeans

(h) Field Beans

(i) Winter Wheat

(j) Rye

(k) Buckwheat

Two basic types of graphs were produced. They differ in the parameter chosen for the

independent variable on the horizontal scale. In the first type, the six times of day are treated

as the independent variables, and three of the seven scan-angle ranges -at nominal angles of

-240 (extreme west), 00 (nadir), and +240 (extreme east) -are used as parameters on differ-

ent graphs. In the second type of graph, the seven scan-angle ranges are plotted along the

horizontal axis, and three times (9:33, 11:33, and 14:50 LST) are parameters. Graphs of both

types were generated for each of the five wavelengths paired with each of the 11 ground covers.

For several ground covers, sufficiently reliable data were not available at all scan angles.

Before plotting, a final fine-scaling adjustment based on the recorded calibration was made

to the data. To compare the six empirical runs to each other, it was necessary only to match

the lamp signals between runs in the first four channels. The signals from the first four runs

(all on the morning flight) were within a few percent of one another, near the limit of accuracy;

and because the variations exhibited no consistent pattern, no correction was applied. Lamp

signals for the last two runs (both on the afternoon flight) were from 4% to 7% lower depending

on the channel, so data from the afternoon runs were scaled up to match the morning runs.

For analysis of thermal channel(No. 12)data, we compensated for adjustments the operators

had made separately for the hot and cold reference-source temperatures throughout the day.

2.2 THEORETICAL CALCULATIONS

Radiance predictions for Lambertian surfaces were made, using the radiative transfer

model developed at ERIM by Dr. Robert E. Turner [3] for comparison with the empirical data.

The radiative transfer model computes quantities such as spectral irradiance at any given

altitude within the atmosphere, spectral path radiance and transmittance for any observation

path, and the total radiance received from a surface with a given reflectance. The quantities

8
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of path radiance and irradiance depend on the reflectance (or albedo) of the background sur-

face, as well as on the haze content of the atmosphere. The model incorporates a number of

standard atmospheres, each designated by its particular horizontal visual range at sea level;

one of these atmospheres is used for calculations when more detailed information on the at-

mospheric state is not available.

Graphs of the model calculations were made on a Calcomp X-Y plotter to the same scale

as the plots of empirical data. This allowed overlaying various empirical and theoretical

graphs for quick comparison of their agreement. Used as a parameter on the theoretical

graphs, ground reflectance appears in increments of 4% from 0 to 32% in channels 1, 4, and

7, and of 4% from 0 to 64% in channel 8 (near-infrared) because of higher reflectances ex-

pected there. Target and background reflectances were set equal for all calculations. A

standard atmosphere characterized by a horizontal visual range of 23 km was used for the

calculations. There is no theoretical graph to match the thermal (channel 12) empirical data:

the radiative transfer model used for this work* is inapplicable to this 9.3 to 11.7 Jim band

where the energy recorded is emitted thermal radiation rather than reflected sunlight. To

match the predictions of ERIM's radiative transfer model to the empirical data, lamp calibra-

tion curves for the July through December 1971 period were used to convert the observed

digital signals to spectral radiance in milliwatts per steradian-centimeter 2-micrometer

[mW/(sr-cm2- m)].

For the analysis of scan-angle effects, we used programs developed at ERIM by Dr.

Gwynn Suits [6] to make some theoretical calculations of bidirectional reflectance from corn

canopies.

2.3 TIME-OF-DAY EFFECTS ON SIGNATURES AND CLASSIFICATION RESULTS

This section will show with empirical data from the Ingham County flights that there are

sizable variations in the mean radiance from each crop as a function of time of day. Classifi-

cation tests using signatures from the first run (9:33 LST) at later times in the day reveal a

serious degradation of classification accuracy; this effect cannot be ignored because, with time,
it becomes progressively worse until by noon essentially nothing is recognized.

A radiative transfer model will then be demonstrated as able to predict these changes

with moderate accuracy, doing best at the shortest wavelengths. We attribute two evident

types of discrepancy-higher afternoon brightness and extra anti-solar peaking-to factors

not included in the model.

*Different models developed at ERIM apply to thermal radiation but were not used here
because of limited resources.

9



ERIM
ALM FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

2.3.1 COMPARISON OF FIELD SIGNAL MEANS

Clear-cut systematic trends as a function of time of day are evident in ground radiance

signals measured for the multispectral scanner data set for Ingham County. We first analyze

the behavior of these signals in the visible and near-infrared channels in comparison with that

predicted by the radiative transfer model. Since the behavior of the far-infrared (or thermal-

radiance) channel is intrinsically different and cannot be compared to predictions of the short-

wavelength radiative transfer model used, it is analyzed separately later.

Figures 1 and 2 portray the temporal variation of the mean radiance for some important

ground covers compared to theoretical predictions. Data for channel 1, which is the shorter

waveband used (0.46 - 0.49 im), are presented in the first figure, while the next presents

data for channel 8, the near-infrared waveband (0.72-0.92 1m, the longest wavelength band

utilized for this portion of the study). For each channel, results are shown for fields within

one of three selected scan-angle ranges nominally centered at -240 (westward), 00 (nadir),

and +240 (eastward). The empirical multispectral scanner measurements are indicated for

the six different times by symbols for each of four ground covers:

Corn (planted in north-south rows)

Corn (planted in east-west rows)

Pasture

Trees

Each symbol represents the average signal over all fields satisfying the conditions, each field

weighted equally. The solid lines depict the theoretical predictions of the radiative transfer

model for Lambertian surfaces with different reflectances.

In the visible and near-infrared channels, the signal means rise until about noon, then

tend to fall off later in the afternoon. We would have expected, a priori, that the afternoon

decline would roughly match the morning rise, at least at the nadir scan angle-assuming

the predominant influence is the total downward solar (plus sky) irradiance which should fall

off symmetrically on each side of local solar noon.

Two apparent forms of deviation occur. First, the measured radiances on the two after-

noon runs stay noticeably brighter than expected. Our conjecture is that scattered radiation

from high altitude clouds increased the overall illumination in the afternoon. This hypothesis

is supported by readings from the sun (and sky) irradiance sensor on top of the airplane, rela-

tive to those of the calibration reference sources. A second observed effect is additional

brightness in the direction opposite the sun, hereinafter called "anti-solar peaking," which is

most evident at the extreme westward and eastward scan angles. This is believed mostly the

result of atmospheric back-scattering of direct solar irradiance for the shorter wavelengths

and bidirectional reflection at the surface for the longer ones. The radiative transfer model
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o Empirical Data, Corn Planted in North-South Rows
A Empirical Data, Corn Planted in East-West Rows Theoretical

17.5- o Empirical Data, Pasture Surface
x Empirical Data, Trees 32 Reflectances
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(a) Scan Angle -240 (Westward)

FIGURE 1. RADIANCE AS A FUNCTION OF TIME, CHANNEL 1 (0.47-0.49 tm).
Empirical data for four crops and theoretical data for various Lambertian surface
reflectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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Theoretical
2- Surface

Reflectances

17.5- o Empirical Data, Corn Planted in North-South Rows (%)
a Empirical Data, Corn Planted in East-West Rows
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x Empirical Data, Trees
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(b) Scan Angle 00 (Nadir)

FIGURE 1. RADIANCE AS A FUNCTION OF TIME, CHANNEL 1 (0.47-0.49 Jm).
Empirical data for four crops and theoretical data for various Lambertian surface
reflectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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O Empirical Data, Corn Planted in North-South Rows
A Empirical Data, Corn Planted in East-West Rows Theoretical

17.5- o Empirical Data, Pasture32 Surface
x Empirical Data, Trees Reflectances
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(c) Scan Angle 240 (Eastward)

FIGURE 1. RADIANCE AS A FUNCTION OF TIME, CHANNEL 1 (0.47-0.49 jm).
Empirical data for four crops and theoretical data for various Lambertian surface
reflectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Concluded)
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o Empirical Data, Corn Planted in North-South Rows
a Empirical Data, Corn Planted in East-West Rows
o Empirical Data, Pasture
x Empirical Data, Trees

20.0
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Local Solar NooI28
Flight Times 024
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EASTERN STANDARD TIME (hrs)

(b) Scan Angle 00 (Nadir)

FIGURE 2. RADIANCE AS A FUNCTION OF TIME, CHANNEL 8 (0.72-0.92 pm).
Empirical data for four crops and theoretical data for various Lambertian surface
reflectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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o Empirical Data, Corn Planted in North-South Rows
* Empirical Data, Corn Planted in East-West Rows
o Empirical Data, Pasture
x Empirical Data, Trees
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FIGURE 2. RADIANCE AS A FUNCTION OF TIME, CHANNEL 8 (0.72-0.92 Jim).
Empirical data for four crops and theoretical data for various Lambertian surface
reflectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Concluded)
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is reasonably successful in predicting both the effects of the changing total downward irradi-

ance and the atmospheric contribution to anti-solar peaking at the shorter wavelengths, but

it does not include a bidirectional reflectance effect and fails to account for the majority of

the anti-solar peaking noted at the longer wavelengths.

We should note that any absolute overall errors in the model, as opposed to differential

errors between different conditions, would not significantly affect interpretations based on

the relative curve shapes. For pure Lambertian surface reflectors, the empirical curve

shapes should ideally match those of the theoretical curves. Deviations of the empirical

curve shapes from the theoretical shapes can be attributed to bidirectional reflectance effects

or, perhaps, to variations in atmospheric phenomena, illumination, and run-to-run calibration

of the scanner data -assuming that differential errors in the model are small by comparison.

We might also note that the effective (equivalent Lambertian) reflectance of the ground cover

can be estimated by comparing the magnitude of the empirically measured scanner signals

with the nearby theoretical curves for different Lambertian surface reflectances.

Some effects seen in these figures are typical of those in most if not all graphs generated.

The theoretical predictions of the radiative transfer model show peaking in the anti-solar

direction (e.g., in the afternoon at the eastward-looking scan angle). This is caused by back-

scattering of incident solar irradiation in the atmosphere. Atmospheric scattering is strongest

in the short-wavelength blue channel (No. 1), but it decreases with increasing wavelength until

in channel 8 any differences are almost indiscernible.

The empirical data partially follow the theoretical curves except for the two forms of

deviation previously noted. Data for the last two times of the afternoon mission are consis-
tently higher in amplitude compared to the theoretical curves than data of the first three

times of day; the fourth time, near noon (11:33 LST), also tends to be higher than the first

three. On the graphs plotted versus time of day for channel 1 (Figs. 1 through 3), empirical

signals for trees at nadir can be seen to correspond to about 3 to 4% theoretical reflectance

at the first three morning times, rising to 5 to 6% in the afternoon. Similarly, the other

three ground covers shown rise from 5 to 7% at morning times to about 8% in the afternoon

(and to 11% for the anti-solar eastward graph). For channel 8, the graph at nadir scan angle

in Fig. 5 shows similar apparent increases in effective reflectance in the afternoon. This

afternoon rise, apparently, is also present at the extreme westward and eastward scan angles
for channel 8 (see Figs. 4 and 6), but substantially masked by additional empirical anti-solar

peaking.

We have conjectured that the higher afternoon measurements were caused by the presence
of high, thin cirrus clouds that increased the total downward irradiance by reflecting addi-
tional light to the ground. Flight logs and ground observations a few miles from the test area
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show that there were scattered, high, thin cirrus clouds in an otherwise clear sky for the

afternoon flight. Flight logs indicate the presence of high cirrus clouds in the morning as

well, but none was observed from the ground. Run-to-run variations may also have been caused

by changes in scanner system response, but an examination of calibration lamp signals showed

insufficient variation to explain the observed morning-to-afternoon data difference. However,

at the time of this analysis, the run-to-run stability of the scanner calibration system had not

been studied thoroughly. (Another task under the parent contract includes a study of the sys-

tem calibration for a more recent version of the M-7 scanner system [7].)

Examination of data from the sun sensor on top of the airplane at 1.52-km (5000-ft) alti-

tude supports the conclusion that the afternoon illumination was brighter. Figures 3 and 4

show empirical measurements (relative) from the sun sensor as a function of time of day,

along with the theoretical total downward irradiance at the aircraft altitude as calculated by

the radiative transfer model. Theoretical irradiances for channel 1 are presented in Fig. 3

for three background albedos (0%, 16%, and 32%), while Fig. 4 shows irradiances for chan-

nel 8 with 0%, 32%, and 64% albedos (only one figure per channel is supplied, since there

is no scan-angle dependency in the sun sensor). Unlike the preceding graphs, the measured

data here were not absolutely calibrated (e.g., in spectral irradiance units) since the sun

sensor is known to have a non-Lambertian response and sufficient calibration data for the

particular configuration were not available. Instead, the measured data were adjusted

relative to the theoretical curves by using the same scaling factor for all times of day such

that the measured data nearest local solar noon (the fourth run) matched the theoretical value.

Ignoring atmospheric effects, we can say that the theoretical curves decline away from local

solar noon according to the cosine law-assuming an ideal horizontal planar detector. Since

the detector is not perfect, we expect additional falloff, relative to theory, of the sensor mea-

surements away from noon, particularly at lower sun-elevation angles. After allowing for this

effect, it can be seen from the graphs that the sun-sensor readings confirm the situation ob-

served in the empirical data from crops (i.e., higher than expected values in the afternoon).

The second form of deviation is that the data tend to be brighter in the anti-solar direction

than is predicted by the theory. This is most evident in channel 8 for which the theory predicts

minimal atmospheric anti-solar peaking: at the westward scan angle in Fig. 4, the morning

data are higher, relative to theory, than the afternoon data; while at the eastward scan angle

in Fig. 6, the afternoon data are higher than expected-even considering the brighter after-

noon illumination. There also seems to be a little additional anti-solar brightness, relative

to theory, in channel 1; when this is examined as a function of scan angle in Section 2.4, how-

ever, the difference does not seem clear-cut.
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FIGURE 3. IRRADIANCE AS A FUNCTION OF TIME, CHANNEL 1 (0.47-0.49 pm).
6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km.

19



I FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

= 25.0
Curves for

22.5- Theoretical
a Surface

20.0- Reflectances 0

17.5- of 0% to 64%c

15.0-

12.5-z

10.0-

7.5- 0 Empirical Data, Sun Sensor Readings

5.0-

2.5- Flight Local Solar Noon
S2Times

8 9 10 11 12 13 14 15 16

EASTERN STANDARD TIME (hrs)

FIGURE 4. IRRADIANCE AS A FUNCTION OF TIME, CHANNEL 8 (0.72-0.92 pim).
6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km.
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The additional anti-solar increase in the empirical data relative to the theoretical anti-

solar peaking noticed is apparently attributable to bidirectional reflectance. The scan-angle-

dependency analysis in Section 2.4 discusses bidirectional reflectance effects in some detail,

making the distinction between the case at shortest wavelengths when anti-solar peaking is

mostly contributed by atmospheric scattering and the case at longest wavelengths when bi-

directional reflectance effects may predominate. The effects of bidirectional reflectance need

further investigation.

The two forms of deviation probably can be attributed to causes specifically excluded

from the theoretical model we used. This model includes neither the effect of clouds, which

we believe caused an overall irradiance increase in the afternoon, nor bidirectional reflec-

tance, which we believe caused anti-solar peaking in addition to that predicted by the model

from atmospheric scattering. Even without excluding these two supposed additional effects,
however, it can be seen that the radiative transfer model adequately predicts major trends in

the empirical data. The theory predicts about the expected increase at later times throughout

the morning, and the predictions for the afternoon come closer than the changes in absolute

radiance in most cases. In channel 1, then, when we compare the first run of the morning

with the afternoon runs, we see that the effective reflectances interpolated from the model

rise about the same at all scan angles (i.e., increases of 30-60% depending on the ground

cover). Yet, the increase in absolute radiance from morning to afternoon is near zero at the

westward scan angle, 35% at nadir, and almost 90% at the eastward angle.

For the far-infrared thermal channel (No. 12, from 9.3 to 11.7 gm), the time-dependent

behavior of the measured signals is shown in Fig. 5 for the same three scan-angle ranges

used before. Note that the measured radiance is a function of ET 4 , where E is the emittance,
0 ! E < 1, and T is the absolute temperature. The apparent temperature scale on the figures

is an approximation which neglects atmospheric effects and assumes that target emittances

are roughly constant and about the same as those of hot and cold calibration plates. There

are no matching theoretical curves here. The short-wavelength radiative transfer model

used for the earlier work is inapplicable at these wavelengths, since the signal is preponder-

antly direct thermal radiation from the target with negligible reflected radiation. Resource

limitations precluded the use of thermal models that exist at ERIM.

One would expect that all ground covers should rise in temperature throughout the morn-

ing and be consistently warmer in the afternoon than they were for corresponding sun elevation
angles in the morning. Observation of the data shows that this is mainly the case. It can be

seen that the temperatures rise through the morning and stay comparatively constant from

about the fourth run on-near-noon (11:33 LST). There is a significant dependence of the

observable effective temperatures on the ground cover type. Trees are always cooler than
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FIGURE 5. APPARENT TEMPERATURE AS A FUNCTION OF TIME, CHANNEL 12

(9.3-11.7 jim). 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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FIGURE 5. APPARENT TEMPERATURE AS A FUNCTION OF TIME, CHANNEL 12
(9.3-11.7 jim). 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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corn (in both east-west and north-south row directions), while pasture is always hotter. The

differences are reasonable in physical terms of the actual temperatures expected. The tree

tops can be expected to stay cooler since their height above the ground exposes them to more

cooling breezes; in addition, trees transpire well (cool by evaporating moisture). At the other

extreme, the pasture and grasses are nearest the hot ground and exposed to the least breeze;

furthermore, their shallow root systems provide less moisture for transpiration under ex-

treme conditions -the flight was made on a hot August day with temperatures as high as 30 0 C

(860F).

Even within the micro system for one ground cover, temperatures were not uniform.

Comparison of the same ground covers on different scan-angle graphs shows the sunlit side

was somewhat warmer. The afternoon measurements at the eastward (anti-solar) scan angle

are particularly warmer than afternoon measurements at the other scan angles. But at the

westward scan angle, the afternoon measurements are only slightly cooler than the near-noon

run, especially for pasture (which, however, is not as reproducible as the other ground covers

shown). This will be discussed further in connection with the subject of scan-angle dependen-

cies in Section 2.4.

2.3.2 RECOGNITION RESULTS

The empirical and theoretical data presented in the preceding section clearly exhibit sys-

tematic trends associated with the time of day. It is important to determine the degree to

which classification performance is affected by such changes in signal levels. A series of

classification tests was made in which signatures obtained from the first run of the day (9:33

LST) were applied to data from that run and from each of the other five runs. The application

of signatures to a run other than that for which they were extracted is hereinafter called
"non-local" classification. "Local" classification, i.e., classification with signatures extracted

from the same run, was carried out for each of the other five runs to provide a standard for

comparison with the performance achieved with the non-local signatures.

Thirty-two nadir fields were used to form combined signatures for eight ground covers-

EW corn (i.e., corn with east-west rows), NS corn (i.e., corn with north-south rows), trees,
pasture, hay, oats, field beans, and soybeans -for each of the six times of day. Only fields

in the nadir scan-angle range (±50 in most cases) were used for training and testing, so that

scan-angle effects would not be a factor in the results. One combined signature was established

for each of six classes, with the subsignatures within a class given equal weights.

The ERIM linear-classification algorithm [8] was used with a classification threshold

corresponding to a 0.001 probability of false rejection (under the assumption of multivariate

normal distributions). Eleven of the twelve available channels were used. The thermal
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channel (No. 12, 9.3 to 11.7 lm) was excluded because it measures emitted radiation which

behaves in an intrinsically different way from the primarily reflected radiation we wanted to

study in the other eleven channels, as discussed earlier in Section 2.3.1. Reflected radiation

(including some scattered radiation from the atmosphere) theoretically should decrease in

proportion to the solar irradiance in the afternoon to match the morning level at the corre-

sponding sun elevation angle (as noted in Section 2.3.1, though, afternoon measurements de-

clined only slightly). One of our objectives, therefore, was to determine how well morning

signatures would perform on data collected under corresponding solar positions in the

afternoon.

Figure 6 portrays graphically the degradation in classification results When the first-

run signatures were used on later runs. The lower values in all cases represent correct

classifications with the non-local signatures from the first run, while the higher values repre-

sent the reference performance achieved with the local signatures (there is of course only one

value for the first run). The exact pattern varies from crop to crop, but the trend is one of

consistent decline in performance as time progresses. The results are also presented in

tabular form in Tables 2 (summary averages over all classes) and 3 (values for individual

classes).

From an average classification accuracy of 84% on the first run (ranging from 77 to 99%

for the six classes), the results decrease to an average of 36% (ranging from 29 to 52%, ex-

cept for an anomalously low 3% for soybeans) for the second run (10:07 LST) which is only 35

minutes later than the first. By the third run (10:55 LST), some 82 minutes after the signature-

extraction run, the average classification accuracy is only 14% (ranging from 0 to 33%).

Recognition is virtually 0% for all ground covers by the fourth run (11:33 LST), which is 120

minutes after signature extraction and only 27 minutes from local solar noon. By comparison,

except for oats on the second run which was anomalously low at 55%, the local classification

accuracy ranged from 77 to 99%, averaging 85%.

False detection and unclassified percentages, averaged over all classes, are also noted

in Table 2. It can be seen that most of the incorrectly classified data were unclassified rather

than misclassified as a different ground cover. One exception noted during the analysis was

corn, for which 13.6% of corn pixels on the second run were classified as soybeans, as

opposed to only 0.8% on the first.

The oat recognition extrapolated to later times better than any other ground cover. Its

32.8% on the third run is about twice the next best of 16.6% obtained for combined hay and

pasture; and 1.4% of oats was still recognized on the fourth run, versus 0 to 0.2% for the

other classes. Soybeans, on the other hand, are the best (at 99.1%) on the first run; yet they

are by far the worst under extrapolation, with only 3.1% by the second run and 0% from then
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a - percent correct crop classification with signatures from same run as classified

b - percent correct crop classification with signatures from 10:10 EST

FIGURE 6. CORRECT CLASSIFICATION ON NADIR TRAINING FIELDS. Both non-local
combined and local combined signatures from the first run were used.
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TABLE 2. TIME-OF-DAY EFFECTS ON CLASSIFICATION, RESULTS
AVERAGED OVER SIX CLASSES

Data: Ingham County, Michigan
6 August 1971

1.5-km (5000-ft) altitude
North-South headings

Times of Run (EST)

10:10 10:45 11:32 12:10 14:33 15:27

Own-Run
Signatures Correct (%) 84 83 88 84 88 86

10:10-Run
Signatures Correct (%) 84 36 14 0.2 0 0

Incorrect(%) 11 10 5 0 0 0

Unclas- 5 53 81 99.8 100 100
sified (%)

Number of Average Number
Class Fields of Data Points

Corn 14 2100
Trees 2 160
Pasture and Hay 7 1400
Oats 4 640
Field Beans 3 1200
Soybeans 2 220
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TABLE 3. TIME-OF-DAY EFFECTS ON CLASSIFICATION, SPECIFIC RESULTS FOR EACH CLASS

Data: Ingham County, Michigan, 6 August 1971, 1.5-km (5000-ft) altitude, North-South headings,
11 channels (thermal omitted), nadir training and test fields, single combined signature
for each class, threshold for 0.001 probability of false rejection for normal distributions.

Percentage-Correct Classification For
Using Average

Classification Signatures Pasture Over
Run LST from Run Corn Trees and Hay Oats Field Beans Soybeans Classes

1 (9:33) 1 83.3 87.6 77.4 81.1 95.2 99.1 84.4

2 (10:07) 1 29.3 52.4 49.3 36.7 40.7 3.1 36.4
2 80.1 89.3 90.2 55.8 95.2 97.5 82.8

3 (10:55) 1 6.8 11.4 16.6 32.8 11.1 0 13.5
3 80.6 90.8 87.6 85.2 95.0 98.4 87.6

4 (11:33) 1 0 0 0.2 1.4 0.2 0 0.2
4 75.4 87.2 84.8 82.8 96.0 87.6 83.5

5 (13:56) 1 0 0 0 0 0 0 0
5 85.4 90.0 85.7 90.5 90.8 98.6 87.7

6 (14:50) 1 0 0 0 0 0 0 0
6 79.1 91.5 86.4 87.2 96.3 90.0 86.1
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on. We suspected that oats might have a broader-than-average signature distribution in most

channels and that soybeans might have an unusually narrow signature in at least one channel.

However, channel-by-channel calculations of the standard deviations divided by the mean sig-

nature value for each material were made (see Table 4), and no such clear-cut differences

between ground-cover signatures are apparent. We presently do not understand why these

classification differences occurred, although correlations between channels were not examined

at this point.

The results of the four morning runs are roughly in accordance with our expectations.

But, the last two runs (afternoon) in all cases give 0% recognition with the signatures from

the first run, although we had expected that classification results would improve again in the

afternoon as the sun geometry became comparable to that of the first run. Note in Table 1

that the first run is 147 minutes before local solar noon, about two-thirds of the way between

the 115 and 170 minutes after local solar noon for the fifth and sixth run. The fifth run is

nearly the mirror image (around local solar noon) of the second, differing by two minutes in

time, 0.070 in solar-elevation angle, and 0.040 in solar-azimuth angle from 1800 (due South).

Also note that the sixth run is fairly near the mirror image of the first run, since the solar

elevation angles differ by only 3.50, and the azimuth angles by only 5.20 from 1800 (due South).

Hence, considering only the effects of the solar angle and noting that all ground areas used

are from subfields restricted to a few degrees around nadir, one would expect that at worst

the classification results on runs 5 and 6 would be commensurate with those on run 2. Instead,

there is absolutely no correct classification of any ground cover tried on either afternoon run.

There are several possible explanations as to why the morning signatures gave poor re-

sults on the near mirror-image afternoon runs. Among them are the following:

(1) Changes in crop leaf attitude, reflectance, etc., perhaps the result of heating and

moisture losses later in the day

(2) The suspected changes in illumination caused by partial cloud cover in the afternoon,

as previously discussed

(3) Run-to-run calibration differences

Before the poor results can be attributed to one of the first two causes, it is necessary

to establish that they cannot be blamed solely on differences stemming from inadequate cor-

rection for run-to-run calibration differences. We have some indications that any remaining

calibration discrepancies are insufficient in magnitude, and apparently of the wrong sign, to

account for the observed differences on the afternoon runs; however, we have not examined

possible calibration differences in sufficient detail to allow a firm conclusion. We do have

cause to suspect some of the coarse-adjustment scaling changes made, particularly on channels
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TABLE 4. FIRST-RUN SIGNATURE SPREADS FOR INGHAM COUNTY TIME-OF-DAY STUDY, STANDARD DEVIATION, '
a, DIVIDED BY MEAN, i

Ground Channel

Cover 1 2 3 4 5 6 7 8 9 10 11 12 O

NS Corn
M 88.81 64.01 71.39 113.69 92.94 75.70 65.68 214.77 179.67 113.34 75.59 122.13
a 7.57 6.03 7.03 12.35 11.33 10.75 10.21 11.95 7.65 9.93 7.78 9.97

a/ % 8.5 9.4 9.8 10.9 12.19 14.2 15.5 5.6 4.3 8.8 10.3 8.2 9.8

Trees
p 64.65 44.93 49.75 81.48 63.35 47.31 37.14 211.60 181.06 92.25 63.66 103.84
a 5.03 4.19 5.73 12.00 9.44 7.24 5.45 36.77 27.84 17.28 6.65 11.50

a/p% 7.8 9.3 11.5 14.7 14.9 15.3 15.7 17.4 15.4 18.7 10.4 11.1 13.5

ca Pasture
p. 87.77 63.93 70.66 110.64 94.22 81.75 75.60 178.67 182.69 145.37 93.78 162.96
a 12.42 9.77 8.51 10.63 11.05 14.23 17.81 28.68 16.42 17.66 14.32 32.53

a/p% 14.2 15.3 12.0 9.6 11.7 17.4 23.6 16.1 9.0 12.1 15.3 20.0 14.7

Oats
S123.42 94.57 100.70 149.76 137.78 135.94 140.54 172.86 178.67 175.75 126.34 176.59
a 16.63 13.31 12.92 17.81 18.05 21.48 25.30 10.76 11.50 25.48 20.25 22.78

a/i% 13.5 14.1 12.8 11.9 13.1 15.8 18.0 6.2 6.4 14.5 16.0 12.9 12.9
z

Soybean

A 105.00 76.66 82.58 127.63 106.12 90.55 82.34 241.38 201.23 137.16 95.20 144.71
a 17.70 14.42 14.73 20.65 21.01 23.32 24.55 12.14 7.36 10.32 11.42 12.12 0

a/% 16.9 18.8 17.8 16.2 19.8 25.8 29.8 5.0 3.7 7.5 12.0 8.4 15.1

m

I

0

.
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other than the four (Nos. 1, 4, 7, and 8) chosen for intensive study under the preceding analysis

of field-signal means. Channel 3, in particular, is suspect. The coarse scale changes re-

corded in the flight log did not agree well with the scaling calculated by comparing the channel

3 calibration lamp signals between run 1 and the afternoon runs. The scaling adjustments re-

corded in the flight log were used to correct the data. It can also be seen that the changes in

means from run 1 to run 6 seem anomalously large for channel 3, as shown in Table 5. One

indication of the possible magnitude of calibration differences is the fine (4 to 7%) calibration

adjustment derived from the calibration lamp signals from run 1 to the afternoon runs for the

four channels studied. These adjustments had been made previously on the afternoon runs for

the field signal mean studies already discussed. Since similar adjustments were not available

for the other seven channels at the time classification was tested, none was applied-however,

note that the adjustments for the four channels studied are all increases which would have

moved the afternoon data even farther from the morning signatures if they had been applied.

The possible magnitudes of any necessary fine scaling calibration corrections apparently are

not large enough (nor the signs correct) to account for the degraded performance, as can be

seen by comparing these 4 to 7% adjustments with the typically 5 to 20% a/ values shown

for various run-i signatures in Table 4. However, these calibration discrepancies warrant

further study to determine whether they can be more precisely determined. Furthermore,

since we have evidence that the afternoon illumination was higher, it would be desirable to in-

vestigate the use of scaling according to the sun sensor.

Also, it now seems desirable to repeat the temporal classification test using fewer chan-

nels. The main reason for this is that some X2 tests of the separation between later-run sig-

nal means and first-run signatures point to improved results on runs 5 and 6 with four chan-

nels instead of 11. Furthermore, results on another task [1] under this contract show

drastically improved signature extension to another area when fewer channels are used.

Since the X2 calculation takes into account the correlations between channels, in general

it is different from values that could be computed from Table 5. The distance of a point from

a multivariate normal distribution can be measured by the exponent of the distribution's like-

lihood function evaluated at that point. This exponent value, which herein is called the X2

value, is the squared distance between the distribution mean and the point in question, mea-

sured in standard deviation units of the distribution. Thus, a large X2 value indicates a large

separation. The X2 value also increases with the number of channels used.

In Table 6 some X2 values for the field-weighted means of various ground covers on later

runs are compared with signatures for the same ground covers from the first run. The x2
values given are both for the 11 channels used in the classification test and for the subset of

four channels selected for intensive study in Section 2.3.1 (channels 1, 4, 7, and 8 -again
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TABLE 5. COMPARISON OF GROUND-COVER MEANS ON FIRST AND SIXTH INGHAM COUNTY
RUNS. Standard deviations of first-run combined signatures, (A6 -1)/l"

Channel

Ground Cover 1 2 3 4 5 6 7 8 9 10 11

Corn, N-S Rows 3.10 2.53 4.70 1.62 1.67 1.48 1.20 0.69 1.09 0.83 0.67
Trees 4.41 3.25 4.76 3.60 1.99 1.92 1.93 0.67 0.95 1.57 0.40
Pasture 2.29 1.90 4.25 2.12 1.92 1.42 1.02 -0.06 -0.03 0.42 0.58
Oats 1.07 0.93 1.82 0.88 0.88 0.75 0.60 0.46 0.65 0.39 0.39
Soybeans 1.56 1.31 2.23 1.36 1.24 0.97 0.76 0.41 0.53 0.31 0.38

Average 2.49 1.98 3.55 1.92 1.54 1.31 1.10 0.97 0.64 0.70 0.48
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TABLE 6. X2 VALUES OF GROUND COVER MEANS ON
LATER INGHAM COUNTY RUNS. Combined signatures

for matching ground covers from first run of the day.

2*x
Ground Cover Run 11 Channels 4 Channels

Corn, E-W Rows 2 27.41 15.12
3 48.49 28.38
4 156.37 107.08
5 713.91 38.53
6 612.21 51.46

Corn, N-S Rows 2 18.74 8.83
3 32.67 12.83-
4 94.64 63.71
5 548.17 19.90
6 491.68 33.38

Trees 2 20.84 11.43
3 33.82 17.66
4 121.69 87.59
5 508.62 18.83
6 549.93 51.32

Pasture 2 16.82 7.46
3 25.31 15.78
4 63.06 38.55
5 616.83 21.00
6 521.49 28.10

Hay 2 43.80 11.27
3 38.79 14.13
4 150.02 79.48
5 692.20 25.27
6 575.21 47.39

Oats 2 19.67 13.00
3 22.20 11.92
4 63.14 34.81
5 581.34 13.93
6 421.80 8.28

Field Beans 2 23.32 13.63
3 34.02 17.09
4 128.05 82.66
5 704.56 31.05
6 645.11 36.12

Soybeans 2 48.38 21.00
3 62.08 27.95
4 156.56 104.01
5 590.34 18.55
6 750.23 57.91

*With aprobability of 0.001, for example, a sample from
a multivariate normal distribution will have X2 > 31.26 for
11 channels and X2 > 18.47 for 4 channels. Therefore, the
magnitude of x2 values for 11 and 4 channels should not be
compared directly.
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excluding the thermal channel). The unexpectedly high 11-channel x2 values between 400 and

750 for the two afternoon runs corroborate the zero-correct classification results obtained

earlier; these values are much higher than even the 62 to 156 values on the fourth run (nearest

noon) at 11:33 LST. Yet, for four channels the afternoon X2 values of 8 to 58 are lower than

the noon values of 35 to 107 and more commensurate with the run 2 values of 7 to 21 (the low

and high extremes occurred on different ground covers, however). Hence, the four-channel

x values for the afternoon runs imply that classification, after degrading toward noon, should

indeed improve in the afternoon.

We need to further study the reasons for the exceptionally large 11-channel X2 values

compared with the decreasing four-channel X2 values on the two afternoon rimuns. There might

be a calibration problem with the two afternoon runs in one or more of the seven channels

excluded in the four-channel subset, or there might be some actual physical differences.

The results obtained to date, even if only the morning runs are considered, demonstrate

that temporal effects can seriously degrade classification performance with airborne-

multispectral -scanner data. We believe, however, that one of the first priorities for continued

work should be to provide a better quantitative assessment of performance degradation by re-

peating the temporal classification tests, which would include using a suitably selected subset

of channels and giving careful attention to their individual calibration.

2.4 SCAN-ANGLE AND BIDIRECTIONAL-REFLECTANCE EFFECTS IN SIGNATURES

When empirical data from the Ingham County flights are considered as a function of scan

angle, it can be seen that there are sizable variations. In the shortest wavelength channel,
the predictions of the radiative transfer model closely follow the empirical data; but at the

longer visible and near-infrared wavelengths, there are strong scan-angle dependencies not

accounted for by this model. Predictions of bidirectional reflectance variations at the longer

wavelengths, made with a different theoretical model developed at ERIM by Dr. Gwynn Suits

[6], show similar variations with scan angle under somewhat different conditions. In the far-

infrared thermal channel, there are small scan-angle variations which show that the ground

covers are slightly warmer on their sunlit side.

Figures 7-9 present both the theoretical radiation-transfer model predictions for Lamber-
tian reflectors and the empirical data for four ground covers, all plotted as a function of scan
angle for channels 1 (0.46-0.49 Mm), 7 (0.61-0.70 Mm), and 8 (0.72-0.92 Jm). Each figure is

for one of three selected times of day (corresponding to different data-collection runs): the

first run, 9:33 AM LST ("morning"); the fourth run, 11:33 AM LST ("noon"); and the sixth and
last run, 2:50 PM LST ("afternoon"). These figures are similar to the graphs of radiance

versus time-of-day in Figs. 1 and 2 already discussed, except in the choice of scan angle for
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FIGURE 7. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 1 (0.47-0.49 Jim).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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(b) 11:33 LST

FIGURE 7. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 1 (0.47-0.49 Jim).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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FIGURE 7. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 1 (0.47-0.49 Jim).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Concluded)
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FIGURE 8. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 7 (0.61-0.70 pim).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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FIGURE 8. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 7 (0.61-0.70 M m).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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FIGURE 8. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 7 (0.61-0.70 Jim).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances. 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Concluded)

41



*RIM FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN
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A Empirical Data, Corn Planted in East-West Rows
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FIGURE 9. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 8 (0.72-0.92 Jim).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances, 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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FIGURE 9. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 8 (0.72-0.92 Jm).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances, 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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FIGURE 9. RADIANCE AS A FUNCTION OF SCAN ANGLE, CHANNEL 8 (0.72-0.92 Jim).
Empirical data for four crops and theoretical data for various Lambertian surface re-

flectances, 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Concluded)
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the independent variable. Since the same data are plotted in both sets of graphs, many con-

clusions are related; however, the plots of radiance versus scan angle are better suited for

studying scan-angle effects, particularly those that might be attributable to bidirectional re-

flectance variations.

Again it can be noted that the shortest wavelength (blue, or channel 1) shows the strongest

theoretical atmospheric effects, with anti-solar backscatter peaking in the west on the morning

run and in the east on the afternoon, and with less scan-angle effect at noon. In this channel,

the radiative transfer model comes very close to predicting the trend of the empirical data

for trees and for corn planted in both row directions. The empirical curve shape for pasture

is irregular and dips around nadir, contrary to the predictions. But this can probably be

attributed to the different ground areas covered in the different scan-angle ranges, since pas-

ture is typically a less uniform ground cover than the others on this data set. There also

appears to be a slight tendency for the empirical data to be a little brighter than predicted by

theory in the anti-solar direction, especially for the corn, but this effect is not consistent or

strong enough to be clearly separable. Hence, we conclude that the scan-angle variations

exhibited by the data in this blue channel can be attributed predominantly to atmospheric con-

tributions, and that any variations caused by bidirectional reflectance are too small to be in-

dependently observable.

Atmospheric influence, as predicted by theory, decreases with increasing wavelength un-

til there is virtually no scan-angle dependency in predictions for the near-infrared channel

(No. 8). Hence, channels 7 (0.61-0.70 gm and 8 (0.72-0.92 jm) are best for examining bidirec-

tional reflectance effects per se since the minimal atmospheric contribution should not mask

surface reflectance changes. The empirical data observed in channels 7 and 8 show scan-

angle dependencies, particularly increases in the anti-solar direction of 40% or more over

the minimum value -far stronger than predicted by the radiative transfer model. The data

for pasture are still irregular, but despite this, the trends noticed in the other ground covers

are now strong enough to be seen in pasture as well.

The deviations from the model may be interpreted in any of three ways: The additional

empirical variations might be atmospheric contributions not properly predicted by the model;

they might be the result of bidirectional reflectance effects excluded from this Lambertian

reflector model; or, they might be caused by some other factor such as non-uniform instru-

ment response, although this last possibility is not considered likely.

The model calculations were made using an assumed average atmospheric visibility of

23 km (15+ mi, considered a typically clear atmosphere at mid-latitudes and low elevations).

While with lower visibilities, the model would predict more atmospheric scattering, the as-.

sumed visibility was reported by the closest airport, and both flight logs and independent
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ground observations indicate a clear atmosphere (except some high thin cirrus clouds in the

afternoon, which should not affect the visibility or haze content in the lower atmosphere). In

other tests of the radiative transfer model [9], it accurately predicted the angular and wave-

length dependencies of sky radiance. Accordingly, we believe that most of the difference

noted between the empirical data and predictions of the radiative transfer model must be at-

tributed to reflectance variations.

An empirical argument in favor of this bidirectional reflectance source of variation is the

difference observed between the behavior of corn versus trees and pasture in the solar direc-

tion (opposite the anti-solar peak); such divergence between two ground covers cannot be ex-

plained by any atmospheric contributions and, hence, must be a ground-based phenomenon.

On the anti-solar side, all four ground covers have similar increases above nadir values; but

on the solar side, the corn radiances start to rise away from nadir while the radiances for

trees and pasture are still declining. This is especially visible for channel 8 (see Fig. 9), in

the east for the morning and in the west for the afternoon.

Some theoretical calculations of the expected bidirectional reflectance variations, which

we made using the Suits model, are shown in Fig. 10 for corn canopies under roughly com-

parable conditions on another data set. The shapes of the bidirectional reflectance curves

agree approximately with the empirical curve shapes. At 0.65 Am (within the channel-7

waveband, 0.61-0.70 Am) these calculations predict a monotonic increase toward the anti-

solar side of 14% (i.e., 3.55 to 4.05% equivalent Lambertian reflectances) from the extreme

eastward scan angle, +240, to the extreme westward scan angle, -240, of the Ingham County

data. This compares with the increase of over 40% in equivalent reflectances (as interpolated

from the adjoining radiative transfer model curves) for the corn in channel 7 on the morning

and afternoon runs, with a roughly monotonic increase toward the anti-solar side. Similarly,

for 0.76 Am (within the channel-8 waveband, 0.72-0.92 Am) a dip in reflectance around nadir

with a 10% increase to the extreme scan angles, ±240, is predicted, versus an observed clear-

cut minimum on the solar side and an increase of over 30% toward the anti-solar side. The

predicted bidirectional reflectance variations should not be expected to show as strong a vari-

ation as is observed in the empirical data, since the solar-elevation angle used for the bidirec-

tional reflectance calculations is about midway between the elevations for noon and the ex-

treme morning or afternoon runs analyzed for Ingham County. The predicted minimum in

channel 8 would be expected to shift more toward the solar side at the more extreme times.

The problem of bidirectional reflectance deserves more study. For example, to deter-

mine whether this model can be more closely related to the observed deviations between the

Lambertian radiative transfer model and the empirical data, more calculations need to be

made using the bidirectional reflectance canopy model for matching conditions.
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FIGURE 10. THEORETICAL CALCULATIONS OF CORN CANOPY REFLECTANCES.
Healthy, mature canopy, no tassels, plant density 28,000/acre, dark soil.

Sun azimuth 1350, sun elevation 570.
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The variation of the direct thermal radiation in the far-infrared channel (No. 12) as a

function of scan angle is shown for the same three times of day in Fig. 11. These curves con-

firm the observations made in Section 2.3 about time-of-day variations, namely that different

ground covers stay at distinctly different temperatures and that they are in general slightly

warmer on the sunlit side. This latter effect is clearly present, although it is mild compared

to the variations, primarily in reflected radiation, seen in the near-infrared. Overall, then,

the data show a consistency of temperature patterns (since the drop around nadir for pasture

is probably attributable to differences between the fields in each angle range, as noted for the

visible and near-infrared channels, it is probably meaningless).
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FIGURE 11. APPARENT TEMPERATURE AS A FUNCTION OF SCAN ANGLE, CHANNEL 12

(9.3-11.7 im). 6 August 1971, altitude 1.5 km (5000 ft), visibility 23 km. (Continued)
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3
MULTI-ASPECT REMOTE SENSING TECHNIQUES

The trend in the development of remote sensing technology has been toward the inclusion

of additional information channels or recording media. For example, early aerial cameras

used black-and-white film with a single spectral filter function. Though single film-filter

combinations are still employed, we now have color film with dyes sensitive to three different

spectral bands of light in common use. Today's multispectral cameras and scanners collect

data in even more spectral bands. Yet another example of this trend is the past development

of stereographic techniques whereby overlapping photographs of terrain taken from different

camera stations and resulting in different angles of view permit the measurement of terrain

elevation differences not easily measured in individual aerial photographs.

This section introduces remote sensing techniques that collect multispectral scanner

data at two or more different view (or aspect) angles over the same scene. These multi-

aspect remote sensing techniques are directed toward the improved extraction from scanner

data of two major types of information: (a) accurate classification information and (b) useful

information about the condition or state of surface materials. Both are discussed and illus-

trated below.

3.1 GENERAL

General observation and experience show that the observed color and brightness of vege-

tation canopies and other surface materials depend on the angle of view, as well as on the lo-

cation of the sun relative to the observer. Calculations made with a vegetation-canopy reflec-

tance model developed at ERIM substantiate that there are spectral differences at different

view angles, and that these differences can be linked to the canopy structure as well as to the

spectral reflectance and transmittance characteristics of the canopy components. To enable

study of techniques for exploiting such differences in remote sensing, the ERIM M-7 multi-

spectral scanner installation in the C -47 aircraft was modified so that it can be tilted forward

at angles up to 550

Figure 12 illustrates typical data collection geometry for a multi-aspect mission. Two

or more passes are made over the flight line, the first with the scanner in its normal posi-

tion; the second and any succeeding passes are made with the scan plane tilted forward to a

selected tilt angle (e.g., 450). Differences will be produced in signals by differences in both

tilt angle and flight heading. In flying the tilted-scanner passes, there are two altitude options.

One is to fly the tilted scanner at the same altitude as that of the standard pass; the other op-

tion is to fly at that lower altitude which gives both the standard and the tilted-scanner passes

the same slant range to the ground for a 00 scan angle. The latter case produces the same
atmospheric path length for the received radiance signals and results in ground spatial
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resolution elements approximately equal in size. Obviously an operational system could be

designed to record both aspects simultaneously, thus requiring only a single pass over the

ground area being scanned.

In describing the geometry of tilted scanner data, several angles are important. Three

are of principal interest for modeling studies: the zenith angle of the sun, the zenith angle of

the scanner's view direction, and the difference between the sun and the view azimuth angles.

These angles, in turn, depend on angles that describe the operational configuration of the

scanner -namely, the tilt angle, the aircraft heading angle, and the scan angle which is mea-

sured from the nadir ground track within the scan plane.

Multi-aspect scanner data collected over two areas are discussed in this report. One is

an agricultural site in Eaton County, Michigan, southwest of Lansing; the other is a forested

site, the University of Michigan School of Natural Resources' Saginaw Forest near Ann Arbor.

The agricultural data were collected on 13 August 1972, the latter part of the growing season,

while the forest data were collected on 20 March 1973 when deciduous trees were leafless

and ground and forest litter were snow-covered. Analyses of these data are reported in later

sections.

In addition to empirical analyses of multi-aspect scanner data, complementary theoretical

analyses were carried out using radiative transfer as well as canopy reflectance models both

to predict and simulate scanner signals and to explore the correlation between canopy biolog-

ical characteristics and observable radiation.

The radiative transfer model, discussed earlier in Section 2.2, was used to compute path

radiance, path transmittance, and surface irradiance for several wavelengths.

The majority of our theoretical analysis was devoted to calculation of canopy character-

istics using the bidirectional canopy reflectance model developed by Dr. Gwynn Suits of ERIM

[6]. The computer program that implements his model was modified in several ways under

this contract. The principal modification was the addition of operational scanner geometry to

the input section, including the capability for specifying a scanner tilt angle and for computing

the angles needed for reflectance calculations.

Suits assumes a multi-layered canopy model, each layer being of infinite extent and char-

acterized by randomly distributed and homogeneously mixed constituents with different spec-

tral properties. Both the spectral transmittance and spectral reflectance for each constituent

are required inputs to the computer program. Also, the physical structure of the canopy can

be characterized by specifying optical cross-sections for horizontal and vertical components

of each constituent material in each layer. The bottom layer of the canopy is bounded by the

ground surface, bare soil or snow for example. The important feature of the model is that it
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predicts the bidirectional reflectance properties of a canopy in a way that can be traced to the

geometric and spectral properties of identifiable canopy components while still allowing the

parametric variation of canopy constituents and observation geometry.

3.2 MULTI-ASPECT TECHNIQUES IN CLASSIFICATION

Multispectral classification algorithms depend on the differences between signals re-

ceived from scene materials in various spectral channels. In a more general context, the

spectral channels are merely information channels upon which the classifier operates, and

the fact that the observed differences have spectral origins is of little or no consequence. An

information channel that differs from another one could just as well do so because of viewing

geometry, temporal, or polarization differences. In addition to spectral differences, this re-

port deals with information channel dissimilarities originating from differences in viewing

geometry, (i.e., it deals with multi-aspect remote sensor data).

A common method of describing multispectral classification techniques is to use two-

dimensional scatter diagrams, that is, plots of data in one channel versus the corresponding

values in another. Figure 13 presents three scatter diagrams of data from a multi-aspect

scanner flight over Eaton County, a mission analyzed extensively in this section. Here, mean

signals from approximately 50 fields are plotted: one scatter diagram for the same spectral

channel at two aspects, one for different spectral channels at a 450 aspect, and the third for

different spectral channels at a 00 (non-tilted) aspect. Differences between signals from the

various classes are readily apparent. Multispectral classification algorithms partition such

signal spaces into regions in which specific decisions are made regarding the class identities

of observation vectors.

3.2.1 DATA SET DESCRIPTION

The agricultural test area overflown is in Eaton County, Michigan, along Cochran Road

just north of Charlotte. The major crops in the area are corn, wheat, hay (alfalfa and red

clover), beans (field beans and soybeans), and oats. There also are pastures and wood lots.

A 16-km (ten-mi) flight line was flown on 13 August 1972, at 10:23 AM EST from an al-

titude of 1.52 km (5000 ft) above terrain, with the scanner in its normal vertical configuration.

The aircraft heading was due north. The scanner was tilted forward by 450 and the flight line

was flown again at 10:43, this time from an altitude of 1.07 km (3500 ft) so that the path length

to the ground was again about 1.52 km. The sun positions at these times are listed in Table 7.

A major reason for selecting this site for the multi-aspect flight was its use as a test

area for two ERTS investigations (MMC 321 and MMC 136). At the time of site selection, ex-

tensive ground observations were being collected by Michigan State University personnel for
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these investigations, so the limited resources available on this task for such work were ap-

plied in increasing the amount of data gathered for the first half of the flight line.

3.2.2 DATA SET PREPARATION

A number of data preparation steps were necessary before classification processing

could take place. The key step was to place data from the two passes into spatial registration

so that multi-aspect and multispectral information channels could be used jointly for classifi-

cation. Two registration procedures were employed--manual and semi-automatic. Semi-

automatic machine registration was accomplished through the courtesy of Digital Image Systems

Division, Control Data Corporation (CDC), Minneapolis, but it was not completed until late in

the period. Consequently, manual registration was done at ERIM on a field-by-field basis for

selected fields and plots, and much of the analysis was carried out on data so registered.

Additional preparation was necessary for the data sets, both before and after registration.

The first step, common to both procedures, was analog-to-digital conversion of the original

scanner data. Averaging was accomplished during conversion in a manner similar to that

described in Section 2.1 for the Ingham County data,except that groups of five scan lines were

averaged.

3.2.2.1 Semi-Automatic Registration

CDC used their semi-automatic warp (SAW) process [10]. It entails the use of manually

selected control points to determine a two-dimensional warp function that is applied to data

points of the collateral image to register them with the reference image. The ten-mile flight

line was divided into several overlapping sections, warp functions were determined and applied

separately for each, and the warped collateral outputs were pieced together to form a corrected and

registered collateral image tape for the entire flight line.

CDC first attempted to use their automatic TRAK process (which reportedly has been

successfully used on other data sets), but the data set had several characteristics that com-

plicated its application. Therefore, they used the semi-automatic process described above.

The ground swath was just over one-mile wide, and there were portions in which the size and

frequency of identifiable features were unsatisfactory. Also, a roll-stabilization failure on the

conventional no-tilt run, which resulted in crooked roads and field boundaries, led to selection

of the tilted-scanner data for the reference image. Distortions caused by aircraft pitch mo-

tions were more pronounced in the tilted scanner data, especially in the scale along the ground

track; another complicating factor was the effect of height displacements in the tilted data.

The CDC algorithm uses only a single channel for determining the warp function, and we

had two tapes of 12-channel data to be registered. Therefore, a program was written at ERIM
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to produce reformatted data tapes which had the 12-channel values packed into two 60-bit

words (for the CDC-6600)-a duplicate of channel-7 values (0.62 to 0.70 im) was used in the

first nine bits for warp determination. CDC used a nearest-neighbor rule in applying the

warp because this rule does not require interpolation calculations and because the pixel (pic-

ture element) shifting algorithm could be modified easily to shift pairs of words instead of

conventional single-channel pixel values.

Another computer program was written at ERIM to convert the 12 channels of collateral

tape data back to the standard ERIM format and, at the same time, merge these data with the

reference data to produce a 24-channel multi-aspect data tape. The spectral passband defini-

tions of the ERIM M-7 multispectral scanner channels used are listed in Table 8.

Before any other processing was performed, groups of two points on four consecutive

lines of data on the 24-channel tape were averaged to minimize the effects of any errors in

spatial registration. A program called SMOOTH, implemented on the 7094 computer under

this task, was used (see Appendix A).

Finally, the program ACORN4 was used to determine an average signal-versus-scan

angle function over the entire flight line for each channel. Correction functions were applied

(using program APPLY) to produce the 24-channel, angle-corrected, multi-aspect data tape

used for classification runs. A tape of 12 difference images was also produced by CDC. It

too was subjected to 2 x 4 averaging before further analysis was carried out.

3.2.2.2 Manual Registration

For manual registration, data from the no-tilt run were first processed to straighten the

roads and field boundaries. A program, DESNAKE, was developed under this task to accom-

plish this correction (see Appendix A). Next, angle-correction functions were determined

and applied to both data tapes. Field-center regions were then identified for fields selected

on line printer graymaps of both the tilt and no-tilt data. The program MERGE, also devel-

oped for this task (see Appendix A), was used to combine the two 12-channel data sets and

create a 24-channel, multi-aspect data file for each field-center rectangle. The procedure re-

lied on the manual choice of rectangles on the two data sets for point-by-point matching within

field centers. Effects of any misregistrations were reduced by averaging groups of two points

and two lines within each data file.

3.2.3 EXAMPLES OF MULTI-ASPECT SCANNER DATA

Figure 14 presents an aerial photograph of a representative portion of one section of the

Eaton County flight line. A corresponding ground-truth map also is presented in the figure.
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TABLE 7. SUN POSITION FOR MULTI-ASPECT FLIGHT
OVER EATON COUNTY

Sun Sun Azimuth (o)
Time (EST) Tilt Angle (o) Zenith (o) (from North)

10:23 0 41.4 122.4

10:45 45 38.1 128.7

TABLE 8. M-7 SCANNER CHANNELS
USED FOR MULTI-ASPECT AGRICUL-

TURAL STUDY

ChannelsChannels
Collected Channels

Used in
Digital 10%* Analysis
Number Passband (Am) to Date

1 0.41 - 0.48 X
2 0.48 - 0.52
3 0.50 - 0.54
4 0.52 - 0.57 X
5 0.55 - 0.60 X
6 0.58 - 0.64
7 0.62 - 0.70 X
8 0.71 - 0.73
9 0.67 - 0.94 X

10 1.5 - 1.8 X
11 2.0 - 2.6
12 9.3 - 11.7

*The spectral passbands here differ
slightly from those listed in Table 1 be-
cause the data were collected in different
years, changes were made in the scanner
system between years, and different
selections of channels for recording
were made from those available.
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Analog images of scanner data collected over the site were examined, and differences in

the tonal patterns, which are exploitable by classification processors, were noted on tilt/no-

tilt pairs of images.

Such dissimilarities between two images can be made more evident by producing a differ-

ence image (i.e., by subtracting the datum value at each scene point in the non-tilted data from

the corresponding datum value in the tilted data). Figure 15 presents digital difference images

for channels 5, 7, and 9 (0.55 to 0.60, 0.62 to 0.70, and 0.67 to 0.94 im, respectively) taken

from the averaged version of the CDC-merged difference tape* (without correction for scan

angle). The area covered corresponds to that presented in the photograph and map of Fig. 14.

An examination of these images shows that trees are the darkest material on the 0.55 to

0.60 Am difference image (D5). Also, the tonal pattern of many fields in the 0.62 to 0.70 Am

image (D7) is nearly the negative of that on D5. That is, bare soil and wheat stubble fields

that are lightest on D5 tend to be darkest on D7. The difference image for 0.67 to 0.94 im

(D9) does not have tonal patterns as distinctive as those on the other two images.

The above results are understandable if one examines scatter diagrams in which mean

signals of the no-tilt class in each channel are plotted versus the corresponding tilt values.

Figure 16 presents such diagrams for channels 5, 7, and 9. Also shown on the diagrams are

families of lines drawn at 450 to the axes. These are lines of constant difference between the

values of the two axes. Each symbol on a difference image represents points that lie between

two similar lines. Note that for each channel shown and every channel analyzed, the tilted

scanner data had a higher average signal level than did the standard data. The intervals as-

signed to each symbol were set automatically to approximately equalize the number of points

printed in each symbol. The map tones then represent only departures from the average

differences.

The scatter diagram patterns on Fig. 16 confirm the observations made previously, but
the associated physical reasons need further discussion. Bare soil shows the greatest aspect
dependence of any of the materials in channel 5 (0.55 to 0.60 jm). There appears to be a

steady progression toward a lesser-aspect effect as one moves to crops with more vegetation

biomass and/or green vegetation (i.e., in going from bare soil to wheat stubble, grass, field

beans, corn, and trees, the difference value decreases).

In channel 7 (0.62 to 0.70 pim), the vegetation signatures have nearly equal difference
values, but bare soil has a markedly lower difference value; it has been determined that this is
a result of saturation in tilt channel 7.

The values on the difference tape actually are scaled and offset differences [i.e.,
VDifference = 0.5(VTilt - VNoTilt) + 255], to allow representation of the entire possible
range of difference values. 63
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The trends seen in the scatter diagrams of class signatures become less evident in

scatter diagrams of means of individual fields within these classes. As an example, the field

scatter diagram presented earlier in Fig. 13(a) may be compared with the corresponding

class scatter diagram in Fig. 16(a). It can be seen that Fig. 13(a) shows a substantial amount

of overlap between fields of different classes.

Additional analysis should be performed in order to better explain the observed signal

differences and, at the same time, to develop human intuitional abilities essential in image

and data interpretation. Ratios and other signal combinations should be examined, both with

and without prior subtraction of path radiance contributions, to find, for example, a transfor-

mation that provides optimum differentiation of scene materials.

3.2.4 MULTI-ASPECT CLASSIFICATION RESULTS

The first step in classification processing required extracting signal statistics from

fields of the various classes and establishing signatures for the classifier. Based on qualita-

tive analysis of signal statistics for all 12 tilted-scanner channels for a sample of fields, six

of the 12 spectral channels were chosen as a subset to be used in subsequent analysis.

Signal statistics for 69 fields, extracted from both tilt and no-tilt data for the six spectral

channels noted in Table 9, were divided into two sets, one with 36 fields and the other with

33. To avoid the introduction of bias, no analysis of the signatures was made to assist the

selection procedure. One set was used for training and the other for testing, with the two

roles reversed for some analyses.

A signature combination program -SIGCOM (see Appendix A) -developed under this

task was used to combine individual field statistics and form signatures for EW corn, NS
corn, EW beans, NS beans, wheat stubble, alfalfa, grass-weeds, grass-pasture, red clover,

trees, brush, and bare soil. Since output from the program LINDIST, implemented under

this task,indicated that there was a large probability of misclassification among the grasses

and clover, between EW and NS corn, and between EW and NS beans, classification results

from each of these similar sets of ground covers were combined to get six classes.

Classification was carried out for the 12 signatures associated with six classes* by
using the ERIM linear-classification algorithm for three selections of data channels: (1) the
six standard no-tilt channels, (2) the six tilt channels, and (3) all 12 multi-aspect channels

(six tilt and six no-tilt). Results are separately summarized in Table 10 for training and
test fields. The average percentage of points from other classes that were falsely assigned
to each class is also listed. Each percentage correct, except as noted, is an over-class

The brush class was excluded because there were no test fields.
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TABLE 9. MULTI-ASPECT CHANNELS RANKED FOR
DISCRIMINATING AMONG SIX AGRICULTURAL

CLASSES, EATON COUNTY

No-Tilt (NT) Tilt (T) Multi-Aspect
Order of Data Data Channel

Selection* Channel Channel Aspect Number

1 5 5 T 5
2 1 9 T 9
3 10 1 NT 10
4 9 10 NT 1
5 7 4 NT 4
6 4 7 T . 7**

*Based on lowest probability of misclassification, according to
program STEPLIN.

**Channel T7 was a close runner-up to NT9 for sixth choice and
was substituted for it in the analysis.

TABLE 10. SUMMARY OF MULTI-ASPECT CLASSIFICATION RESULTS
FOR HAND-REGISTERED DATA FROM EATON COUNTY

Classification Results Averaged
Over All Classes***

Percent False
Number of Training Channels Used Percent Correct Detections

Signatures Set Number and Aspect* Training Test Training Test

12(6T + 6NT) 95.9 78.2 0.8 3.3
6

12 (Classes) A 6(NT) 93.3 73.6 1.2 4.4

6(T) 86.6 72.5 2.8 4.8

12(6T + 6NT) 92.5 78.8 1.2 2.8

6 6(NT) 90.3 82.8 2.0 3.9

6 (Classes) B 6(T) 87.6 81.6 2.6 4.9

6(3T + 3NT)** 91.6 86.0 1.9 3.0

*T = Tilted (450 Aspect)
NT = Non-Tilted (00 Aspect)

**The entries in all other rows are for a X2 value of 5 99.9, giving a rejection threshold with
a very small probability of false rejection. For the "best six" runs, a threshold of 0.001 probability
of false rejection was used inadvertently, so the designated number is the percent correct based
upon the 75% of all points that were classified.

***The percentage correct classified of all points in each plot was computed. These percentages
were averaged over all plots in a class to obtain the class average. The overall result given is an
average over the six classes.

69



!RI M FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

average of the average correct classification in individual plots (or fields) within each class

(based on all points in each plot). It is seen that classification percentages are higher in

training than in test data (e.g., 96% as compared to 78% for the multi-aspect case). The per-

formance differences between the three selections are not especially great; however, the

multi-aspect correct percentages are higher for both training and test data, and false detec-

tion percentages are lower.

A more detailed breakdown of these classification results is presented in Table 11, in

which averages are presented separately for each of the six classes. The classes best recog-

nized on all training cases are trees and bare soil. Trees were correctly identified 95% of

the time, except for the no-tilt case (77%). The recognitions for soil were 100%, except for

a slightly lower tilt performance (90%). The multi-aspect result is the best on both trees and

bare soil, as well as on corn (79%). Test results are poorest on field beans (-50% for multi-

aspect and no-tilt, and 35% for tilt), which is explainable by the large variability of the spec-

tral signatures of beans which were in varying stages of yellowing; tilt data performed poorly

even on the bean training fields. Accuracies on grasses and wheat stubble test fields ranged

from 68 to 76%, with no clear difference between channel sets.

The use of combined signatures is an alternative to multi-modal signatures. The pro-

gram SIGCOM was used to combine the mode signatures for each of the classes. However,

since the role of the training and test sets was reversed at the same time, the effects of the

two changes became intermixed and precluded separate analysis. We then performed classi-

fication using the six combined signatures -corn, beans, wheat stubble, trees, grasses, and

bare soil. The 69 fields were classified four ways using the new combined signatures for the

following subsets of channels: (1) the six tilt channels, (2) the six no-tilt channels, (3) all 12

multi-aspect channels, and (4) the six best multi-aspect channels (3 tilt + 3 no-tilt).

The choice of the six best multi-aspect channels was based, except for one minor adjust-

ment, on a rank-ordering of channels by program STEPLIN according to their ability to sepa-

rate the six signatures. The first two channels selected were tilt channels (5 and 9); the next

four were no-tilt (10, 1, 4,and 9). The minor adjustment for classification was this: we sub-

stituted tilt channel 7 for no-tilt channel 9 as the sixth channel (tilt channel 7 was a very close

runner-up to no-tilt channel 9). The substitution gave us three channels chosen from each of

the tilted and non-tilted sets, and also, by avoiding double use of channel 9, permitted single

usage of each spectral channel.

The overall classification results for six signatures also are presented in Table 10. The

results for the different channel selections again are close to one another. On training data,

the percentages correct are slightly lower than for the 12-signature cases, while the test

values are slightly higher. Values for the six best channels, unfortunately, are not exactly
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TABLE 11. DETAILED TABULATION OF MULTI-ASPECT CLASSIFICATION RESULTS FOR HAND-REGISTERED DATA FROM EATON COUNTY

Classification Results for Individual Crops (Averages Over Plots of
Percents of Total Number of Points in Each Plot)

Percent Correct and Percent False Detections

Field Wheat Bare
Channels Used Field Soil
Number of Training Number and Corn Beans Trees Grasses Stubble Soil

Number of Training Number and
Signatures Set Aspect* Training Test Training Test Training Test Training Test Training Test Training Test

12 (6 Classes) A 12 (6T + 6NT) 98.8 78.9 96.8 51.2 100.0 95.8 93.4 67.5 86.7 75.5 100.0 100.0

(0) (0.2) (1.0) (3.6) (0) (0) (3.3) (13.8) (0.2) (0.9) (0.3) (1.7)

6 (NT) 96.7 71.1 90.0 53.6 98.3 77.4 85.5 69.8 89.7 69.5 99.5 100.0
(0.4) (0.3) (1.4) (6.4) (0) (0) (4.1) (14.1) (0.3) (1.7) (0.8) (3.6)

6 (T) 93.0 69.8 67.5 35.4 97.8 95.6 88.6 70.9 77.2 73.1 95.4 90.0
(0.2) (1.8) (2.5) (6.2) (0.4) (2.1) (10.5) (17.6) (2.5) (1.1) (0.5) (0)

6 (6 Classes) B 12 (6T + 6NT) 96.4 90.2 91.1 68.0 99.6 91.5 82.9 56.4 90.7 92.2 94.3 74.4 0
(0.1) (0.5) (3.1) (5.6) (0.1) (0.1) (2.7) (4.7) (1.2) (5.6) (0) (0.1)

6 (NT) 97.6 96.9 87.0 68.5 94.6 97.6 79.0 57.6 84.3 93.4 99.5 82.5
(0.7) (1.6) (4.5) (3.9) (0.1) (1.5) (4.2) (8.4) (1.7) (7.8) (1.0) (0.3)

6 (T) 96.5 93.0 81.2 75.6 94.8 95.9 67.6 37.8 94.0 88.1 91.7 99.1
(1.8) (0.9) (5.5) (10.8) (0.6) (0.2) (3.7) (5.8) (4.2) (11.2) (0) (0.6) o

6** (3T + 3NT) 90.0 97.1 91.8 62.5 100.0 100.0 84.9 76.7 84.4 79.8 100.0 100.0

(0) (0.1) (6.2) (5.0) (0.3) (0.5) (4.2) (9.3) (0.7) (2.6) (0) (0.2) z

T = Tilted (450 Aspect)
NT = Non-Tilted (00 Aspect)

**The values in all other rows are for a X
2 

value of !99.9, giving a rejection threshold with a very small probability of false rejection. For the "best six" _

run, a 0.001 probability of false rejection threshold was used inadvertently, so the designated number is the percent correct based upon the 75% of all points

that were classified.
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comparable to the others because a different rejection threshold was used for those runs

than for the others.

Detailed classification results for the individual classes are presented in Table 11. All

performances for test trees were again good (92 to 100%); and performances for bare soil

were at or near 100% for the tilt set and six-channel multi-aspect set, but they dropped some-

what for both the 12-channel multi-aspect and six no-tilt channel sets (74 to 83%). The recog-

nition accuracies of test corn and wheat stubble improved over those obtained with multi-

modal signatures from the other training set--values of 90% and greater were obtained in

most instances. Even performances for field beans were higher (at 68 to 75%) with the

newer combined signatures than with the older multi-modal signatures.

Results from our analysis of manually registered data indicate that multi-aspect data

hold some promise for improving classification performance, but the case for the use of such

data will require additional demonstration. As always, in machine-processing studies, the

training of the classifier is important, as well as the inherent separability of the classes.

Two of the scatter diagrams in Fig. 13 represent the first two channels selected in runs of

program STEPLIN to rank-order the available channels (see Table 9). Figure 13(b) represents

the top pair for both tilt-only and multi-aspect data, while Fig. 13(c) represents the choice

for no-tilt data. Considerable overlap can be seen between several of the classes. If an

analysis of signature variability were made part of the training procedure, it might improve

results and lead to increased understanding of real multi-aspect data.

Results in tabular form do not always provide a complete description of classification

performance. Valuable insights and observations can also be gained from examination of

recognition maps. The manually registered data do not lend themselves to mapping, but the

machine-registered data are well suited to the purpose.

Because of the late availability of the machine-registered data, the six combined signa-

tures extracted from the hand-registered data were used for classification on the machine-

registered data to produce recognition maps for the entire flight line. Recognition maps

were made using the six no-tilt, six tilt, and six best channels for comparison. Maps for a

4.8-km (3-mi) section of the flight line are presented in Fig. 17. A threshold (x 2 = 99.9)

with a very low probability of rejection was used. Quantitative analysis on a field-by-field

basis was not completed, but some qualitative conclusions have been drawn from an examina-

tion of these maps.

First, the classification patterns are more spotty on the no-tilt map than on the others.

Second, mature trees appear to be most accurately delineated on the multi-aspect map (see

bottom third of map). Third, corn was less often missed on the tilt map, and most corn

fields appear to be well delineated, but false detection of corn within trees is a problem.
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Fourth, corn was recognized nearly as well with multi-aspect data as with tilt data, with fewer

false detections. Examples of poorer corn field recognition with no-tilt data are seen in the

top left corner and across the middle of the maps. With the multi-aspect and tilt data, indi-

vidual field recognition is more of an "either-or" situation than for no-tilt data, in which

variations across fields are more pronounced.

3.3 MULTI-ASPECT TECHNIQUES IN INFORMATION EXTRACTION

Classification techniques are used on remote sensor data to identify one or more classes

of material in a scene. In addition to identity, other types of information can be extracted

from the data. For example, having identified a field as belonging to a particular class of

agricultural crop, one might wish to determine its condition, either absolutely or in compari-

son to other fields of the same crop. There are sometimes large differences in condition

within a class, for which separate signatures are established (e.g., mature and recently har-

vested alfalfa, or healthy and severely blighted corn). At other times, the differences are

less extreme and a continuous range of variability can be encompassed in a single signature

for identification (e.g., density of plant cover, or level of stress). If additional information is

to be extracted regarding the condition of the identified members of a class, we must establish

relationships between the remotely sensed radiation and the conditions of interest. Multi-

aspect data promise to add a new dimension to remotely sensed data, one that is related to

the structure of vegetation canopies and/or the macro- and micro-structure of other reflect-

ing surfaces.

This section discusses initial studies of the use of multi-aspect data for agricultural and

forestry applications. Our studies primarily involved calculations made with the Suits

bidirectional-reflectance model for vegetation canopies. The agricultural reflectance calcu-

lations were made for observation conditions comparable to those of the Eaton County data

set analyzed in Section 3.2. Corn field reflectances were calculated for a variety of canopy

characteristics.

The forest reflectance calculations were made for a variety of canopy characteristics

under conditions that matched a flight made in March 1973 over an experimental forest with

deciduous trees in a leafless condition and snow cover on the ground. These theoretical cal-

culations are compared with the empirical scanner data.

3.3.1 AGRICULTURAL APPLICATIONS

We made a series of reflectance calculations to explore the ways in which corn field

spectra depend upon the structure and composition of the canopy. The structural character-

istics and component reflectances and transmittances for corn were obtained from Dr. Gene

Safir of Michigan State University and Dr. Suits [11].
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The first effect explored was that of differences in planting density in healthy corn cano-

pies. Two density values were selected, one higher (-69,200 plants/hectare or 28,000

plants/acre) than the average planting density for corn and the other lower (-34,600 plants/

hectare or 14,000 plants/acre). Calculations at wavelengths of 570 and 760 nm (two of 13

wavelengths for which calculations were made) are plotted with open and closed circles in

Fig. 18. Figure 18(a) is a multi-aspect scatter diagram for 570 nm (i.e., the reflectances for

a 450-tilt geometry are plotted versus the corresponding reflectances for a no-tilt geometry).

An aircraft heading of 3600 (i.e., due North) was assumed for these calculations, as well as a

sun zenith angle of 330 and a sun azimuth angle of 1350. The seven points plotted are for scan

angles of -3 0 0, -200, -100, 00 , 100, 200, and 300. It can be seen that the reflectances are less

for the denser canopy along both axes. The situation is different in the scatter diagram for

760 nm (see Fig. 18(b)). Here, reflectances for the denser canopy generally are greater than

those for the thinner canopy. But, while the separation is complete in the 450 tilt data, there

is some overlap in the no-tilt direction.

The 13 wavelengths selected for the calculations approximately correspond to the band

centers of M-7 scanner channels. The optimum two channels selected from a subset of 12

multi-aspect channels in Section 3.2 were tilt channel 5 and tilt channel 9. The nearest wave-

lengths from the corn canopy reflectance calculations are 570 and 760 nm, respectively. A

scatter diagram for these wavelengths is presented in Fig. 19. It should be compared to

Fig. 13(b), the corresponding empirical scatter diagram.

Still considering only the healthy canopy, plotted in both open and closed circles, one

notes that the density differences again are greater than the scan-angle differences. A lower

density decreases the 760-nm reflectances while it increases the 570-nm reflectances for the

given soil type (see the discussion of soil color effects below).

The next effects explored were those of moisture stress and chlorosis (yellowing) of the

leaves. The canopy structural parameters measured by Suits and Safir for a moisture-

stressed corn field were used; basically, the stressed canopy had a shorter height and differ-

ent distribution of leaf surfaces than healthy corn. Severe chlorosis was simulated by changing

the spectral characteristics of 50% of the healthy leaves to those of chlorotic leaves. The re-

sults of reflectance calculations for stressed and chlorotic corn are plotted in Figs. 18 and 19

with open and closed triangles. The combined effect is to shift the reflectances from the dense

canopy in the same general direction as the less dense canopy but substantially farther away.

Also, since the stressed chlorotic canopies are distinctly separated from the healthy canopies

on all diagrams, density differences do not cause any overlap between reflectance patterns

for the two conditions.
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FIGURE 18. EFFECTS OF DENSITY AND CONDITION ON MULTI-ASPECT
REFLECTANCE OF CORN CANOPY, SIMULATED CORN, ± 300 SCAN

COVERAGE (Continued)

76



IM FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

60

SHealthy, 28,000 Plants/Acre, 84% Cover
0 Healthy, 14,000 Plants/Acre, 60% Cover
A Chlorotic and Stressed, 28 K/Acre, 73% Cover
A Chlorotic and Stressed, 14 K/Acre, 44% Cover

50

L0o o

A A

A A A,

. 40

30
30 40 50

NO-TILT EQUIVALENT DIFFUSE REFLECTANCE (%)

(b) 760 nm

FIGURE 18. EFFECTS OF DENSITY AND CONDITION ON MULTI-ASPECT
REFLECTANCE OF CORN CANOPY, SIMULATED CORN, +300 SCAN

COVERAGE (Concluded)
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FIGURE 19. EFFECTS OF DENSITY AND CONDITION ON SINGLE-ASPECT
REFLECTANCE OF CORN CANOPY, SIMULATED CORN, ±300 SCAN

COVERAGE

78



LRIM FORMERLY WILLOW RUN LABORATORIES, THE UNIVERSITY OF MICHIGAN

Another factor that affects the reflectance of crops with less than 100% cover is the spec-

tral reflectance of the underlying soil. The reflectances of a light soil were used for the cal-

culations presented in Figs. 18 and 19. Similar calculations also were made for a dark soil.

Figures 20 and 21 present scatter diagrams for the results of calculations at a 00 scan angle

for each of the four canopy types (two conditions, each at two densities), both with a light soil

and a dark soil underneath. The multi-aspect diagram for 570 nm (see Fig. 20(a)) shows that

there is little effect for a dense healthy canopy. As the density decreases, however, the soil

whose reflectance differs in greater degree from that of the healthy corn (in this instance the

light soil) causes a shift in canopy reflectance. Soil color has a more pronounced effect on

the stressed chlorotic canopies, because of their reduced ground cover percentages.

The final effect studied was that of corn tassels on the reflectance of a mature canopy.

Tassels appear in late July or early August after the corn stalks have reached their full

height. Tassel colors vary somewhat from variety to variety and generally change color as

they mature (e.g., light green upon emerging and reddish brown upon maturing). The color

change in corn fields at the time of tasseling is striking when viewed obliquely from ground

level; calculations were made to estimate the effect on airborne multi-aspect data. Calculated

reflectances for healthy corn with and without tassels are presented in Figs. 22 and 23; two

tassel colors, two densities, and two soil colors were used for the calculations.

There are three groupings of points on the scatter plot for 570 nm (see Fig. 22(a)). The

first group includes both the high densities -irrespective of soil color, without tassels and

with reddish tassels -and the low densities -with dark soil and reddish or no tassels. The

second includes the light tassels on high density plots, while the third includes the low density

plots on light soil for all three tassel conditions. Thus, tassels do change the multi-aspect

reflectances of a corn canopy, but their effects can be overshadowed by soil-color differences

on thin canopies. The same general conclusions can be drawn from Fig. 22(b) for 760 nm,

although the grouping of plots is somewhat different and tassel color has more influence.

The final scatter diagram (see Fig. 23) of the corn-tassel effect is for the best channels,

570 and 760 nm (both tilted). Here, the dispersion pattern is mostly vertical in extent, as

opposed to the radial dispersion of the other two figures. The highest points are for high

density and for the lower density with light soil and no tassels. The middle group of points

is primarily for low density with light soil and tassels, while the lowest points are for reddish

tassels and low density with dark soil. A comparison with Fig. 13(b) shows a similar type of

dispersion in the empirical data for corn fields. The corn fields in the test area were indeed

in the process of tasseling at the time of the flight, and there were fields at all stages of

development-some with mature reddish-brown tassels, others with light-green tassels, and

still others without tassels. There was very little corn blight in the area that year, so most

corn fields were healthy.
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FIGURE 20. EFFECT OF SOIL COLOR ON MULTI-ASPECT REFLECTANCE
OF CORN CANOPY (Continued)
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FIGURE 20. EFFECT OF SOIL COLOR ON MULTI-ASPECT REFLECTANCE
OF CORN CANOPY (Concluded)
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FIGURE 21. EFFECT OF SOIL COLOR ON SINGLE-ASPECT REFLECTANCE
OF CORN CANOPY, 450 TILT
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FIGURE 22. EFFECT OF TASSEL COLOR, SOIL COLOR, AND DENSITY ON
MULTI-ASPECT REFLECTANCE OF CORN CANOPY (Continued)
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FIGURE 22. EFFECT OF TASSEL COLOR, SOIL COLOR, AND DENSITY ON
MULTI-ASPECT REFLECTANCE OF CORN CANOPY (Concluded)
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FIGURE 23. EFFECTS OF TASSEL COLOR, SOIL COLOR, AND DENSITY
ON SINGLE-ASPECT REFLECTANCE OF CORN CANOPY, 450 TILT
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3.3.2 FORESTRY APPLICATIONS

Multispectral scanner data have been used previously with computer classification proce-

dures to type-map forest species. Mappings into broad categories such as deciduous versus

coniferous stands generally are easiest, but there has been some success in mapping upland

hardwoods versus bottom-land hardwoods [12] and in identifying specific species [13]. In

addition to species identity, another very important characteristic of forest stands is their

standing volume or biomass. Various ground sampling procedures are commonly used to

estimate the volumes of stands.

Techniques that use aerial photography also exist. These generally depend on measure-

ments of tree crown closure, crown diameter, and/or stand height (see Section 3.3.3.2 and

Appendix B). Because reflectances observed at two or more angles depend on the structural

parameters of a canopy, we have begun to investigate the feasibility of using multi-aspect

scanner data to estimate important characteristics of tree stands.

When deciduous trees are in a leafless condition their stems are visible from above. As

a starting place, we chose to collect multi-aspect data over leafless trees with an underly-

ing snow cover to provide a uniform background against which to view the trees. Correspond-

ing calculations were made with the Suits canopy-reflectance model for a range of canopy

parameters that allows some interpretation of multi-aspect scanner data.

3.3.2.1 Photointerpretation Techniques for Forest Mensuration

Techniques have been developed to use aerial photography for estimating timber volume.

Such techniques offer several advantages over the more traditional ground-measurement

methods. These advantages include a reduction in expensive field work, more rapid surveys,
and ease of surveying isolated areas. The same advantages would also apply to multi-aspect

techniques with multispectral scanners -should such techniques be successfully developed.

In view of this pertinence, aerial photo methods of volume estimation (described in more de-

tail in Appendix B) are summarized below.

Ground measurements of height, age, and basal area provide one basis for determining

stand volumes, while diameter at breast height (dbh) and merchantable height measurements

can determine individual tree volumes. Since these variables cannot be measured directly in

aerial photographs, substitute measurements are made of related quantities (i.e., total height,
crown diameter, and crown closure instead of merchantable height, dbh, and basal area, re-

spectively).

Established aerial tree volume tables permit estimates of the volumes of individual trees

from measurements of total tree height and crown diameter. Trees selected according to

some sampling procedure can thus be measured to provide individual tree-volume estimates

which are extrapolatable to estimates for entire forests.
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The use of aerial-stand-volume tables is an alternative to tree-volume tables. Here, re-

lationships have been established previously between characteristics of whole stands of trees

and the stand volume. The stand method adds crown closure as a variable in the estimation

model, and redefines height and crown diameter to be average characteristics of trees in the

stand.

Aerial stand methods possess advantages over individual tree methods for estimating

timber volumes from aerial photography. (See Appendix B for further discussion of forest

mensuration methods.)

3.3.2.2 Multi-Aspect Data Collection and Data Preparation

Data were collected in Michigan in March and April of 1973, generally under the desired

conditions. The first data set, 20 March, was collected over the Saginaw Forest near Ann

Arbor, an experimental forest of The University of Michigan's School of Natural Resources.

The flight was made in conjunction with a test flight of the scanner system after over-winter

modifications, and it posed some difficulties in processing. Data that have not yet been

analyzed were collected on a second flight made on 11 April over natural stands of aspen near

Cadillac in the Northwestern part of the Lower Peninsula.

The Saginaw Forest data were collected from an altitude of 0.61 km (2000 ft) with headings,

tilt angles, and sun positions as listed in Table 12. As the table shows, the data were collected

very shortly after solar noon with the sun azimuth 100 to 200 from due South.

A malfunction in the scan-motor synchronization on this first flight of the season caused

straight roads and field boundaries to appear undulating along the flight line. These undulations

were removed by use of manual inputs to program DESNAKE (see Appendix A). Selected areas

were then manually placed in spatial registration and signatures extracted for analysis.

3.3.3.3 Theoretical Reflectance Calculations

The major portion of this forestry study involved the calculation of multi-aspect reflec-

tances of leafless tree stands as functions of several parameters. The Suits bidirectional-

reflectance model for canopies was used, and the ground surface was assumed to be snow

covered.

A simplified physical model was assumed for trees. Each tree stem was assumed to have

a conical shape with five (non-independent) parameters: ds = stem basal diameter, h = stem

height, a b = stem basal area, ap = stem vertical profile area, and vs = stem volume. The re-

lationships between these parameters are as follows:
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TABLE 12. SAGINAW FOREST FLIGHT, 20 MARCH 1973

Time Tilt Heading (0) Sun Zenith Sun Azimuth Angle (0)
(EST) Angle (o) (CW from N) Altitude (km) Angle (0) (CW from N)

13:10 0 180 0.61 42.5 1900

13:30 45 180 0.61 43.4 1970

13:34 45 360 0.61 43.7 1990
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Parameter Typical Units

Tree Basal Area ab = d/2 4 (m 2)

Tree Profile Area ap = d sh/2 (m 2

Tree Stem Volume vs = abh/3 = ad2h/12 (m 3 )

For a tree stand, which is composed of many individual trees, we must use "per unit area"

designations and add N, the number of tree stems present per unit area. (For this report,

stand parameters are capitalized to differentiate them from tree parameters.) Each stand

was assumed to be composed of trees of equal size, so:

Parameter Typical Units

Stand Height H = h (m)

Stand Stem Density N (# stems/ha)

Unit Stand Basal Area Ab = Nab  (m2/ha)

Unit Stand Profile Area A = Na (m2/ha)

Unit Stand Stem Volume Vs = Nv = N(abh)/3 = AbH/3 (m3/ha)

Since trees have branches as well as stems, it was necessary to include branch param-

eters in the model. A two-layer canopy was used. The top layer contained all the branches

and a portion of the stem, while the bottom layer contained only the remainder of the stem.

Branches were assumed to be randomly positioned and oriented, as well as being describable

by an average diameter, db, and a total length, 1
b , or equivalently by db and a total per-tree

branch volume, vb. The unit stand branch volume was Vb = Nvb .

The principal spectral feature that one observes in data such as that described above is

the difference in reflectance between the tree bark and the snow. Bark tends to have a low

reflectance (e.g., 10 to 20%) at visible wavelengths and high reflectance (e.g., up to 50 or 60%)

at near-infrared wavelengths, according to spectral reflectance measurements made of Big-

tooth Aspen (Populus gradidentata) bark under this project. One of several spectral reflec-

tance measurements is presented in Fig. 24, (a) from 0.35 to 1.00 /m and (b) from 1.0 to 2.6

Am. A Beckman spectrophotometer with an integrating sphere coated with barium sulphate

was used. The laboratory measurements were digitized, corrected for the non-unity reflec-

tance of barium sulphate, and graphed on a line-printer output. The bark sample was collected

at breast height (1.37 m or 4.5 ft) in May 1973 and kept refrigerated until measured five weeks

later.
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A wide range of bark reflectance values was used in the calculations: 1, 2, 4, 8, 12, 16,

20, 24, 28, 32, 48, 64, and 83%. An 83% reflectance was used for the snow. Other parameters

that were used were as follows: (a) 14.14, 20.00, and 28.28 m 2/hectare for unit stand basal

area, Ab; (b) 14.14, 20.00, and 28.28 m for stand height, H; (c) 500, 700, and 1000 stems/

hectare for stand stem densities, N; and (d) 5, 12.5, and 25mm average branch diameters,

Db,for different unit stand branch volumes, Vb.

3.3.3.4 Analysis of Results

Analysis of the theoretical reflectance calculations and corresponding scanner data was

not completed during this reporting period. However, it is useful to present a few interim

results that illustrate major effects.

The first graph (see Fig. 25) illustrates the way in which canopy reflectances at both

no-tilt and 450-tilt aspects depend on stem volume for a stem-only canopy. Results for only

the two extreme values of bark reflectance are presented.

The second graph (see Fig. 26) illustrates the large influence of branches on the reflec-

tance of a canopy having a single-stem configuration and volume. The top pair of lines is

for the stem-only case. Note that there is a cross-over between the reflectances at the two

aspects as the bark reflectance approaches the value for snow. When branches are added

with a volume amounting to 20% that of the stems, the overall canopy reflectance decreases

markedly. When the average branch diameter is decreased from 25mm to 12.5 and then 5.0,
the total length of such branches increases, such that the total cross-sectional area of

branches increases and the canopy reflectance decreases even further. Note also that the

cross-over point between the two aspects moves to lower bark reflectances as branch diam-

eter decreases.

The final graph (see Fig. 27) is of empirical data extracted for a sugar-maple (Acer

saccharum) stand in the Saginaw Forest. The voltage values for the sugar maple were

divided by those for open snow. Reflectance values for the sugar-maple canopy were computed

by assuming that the snow reflectance was 83% at all wavelengths. Although the x-axis on this

figure is wavelength, we have seen earlier that bark reflectance (for aspen) increases with

wavelength. Consequently, the graph approximates the canopy reflectance versus bark re-

flectance graph of Fig. 26. The cross-over between canopy reflectances at two aspects

is clear and matches the trend shown in theoretical model predictions.

Thus far these results have not been subjected to more detailed analysis and interpreta-

tion, nor have we established a match between theoretical and empirical stand parameters.

We have, however, shown that trends predicted by the model exist in empirical multi-aspect

data. For an answer to the question of whether forest-stand-volume information can be
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FIGURE 25. THEORETICAL STEM-ONLY FOREST CANOPY MULTI- ASPECT
REFLECTANCE: BARK REFLECTANCE AND STEM VOLUME DEPENDENCE.

Ground reflectance 83% (snow), scan angle 00 (nadir), sun azimuth 1850,
sun zenith 530.

93



1000 -

900 -

x = 45/360 } Stem
o x = 00  Onlyo 800 -
'K 0 - -X x = 450/360 D 25

; X x =45/360 .
700 x=0 0  Db 12.5

SID

Z / x=0

"X

300 Stand Stem Density, N = 70/ha
Stand Basal Area, Ab = 20 m2/ha
Stand Height, H = 20m

200 Stand Stem Volume, Va = 133 m 3 /ha
200 Stand Branch Volume, Vb = 20% Vs

Average Branch Diameter, Db = 25,12.5,5mm

x = Tilt Angle/Heading
Scan Angle = 00
Sun Azimuth = 1850

S I I :Sun Zenith =530

10 20 30 40 50 60 70 80 90

BARK REFLECTANCE (%)

FIGURE 26. EFFECT OF BRANCHES ON THEORETICAL MULTI-ASPECT REFLECTANCE
FOR LEAFLESS FOREST



50

Z 45

40
z

z 35 -

30 --

Data Collected: March 20, 1973
Altitude = 0.6 km (2 kft)

25 -- * Tilt Angle = 0
x Tilt Angle = 450

m

20 I I I I I I I
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

WAVELENGTH (pm)

FIGURE 27. MULTI-ASPECT REFLECTANCES FOR LEAFLESS SUGAR MAPLE STAND. Snow covered background.



FORMERLY WILLOW RUN LABORATORIES. THE UNIVERSITY OF MICHIGAN

extracted from multi-aspect data, further analysis will be required. We conjecture that it

may be possible to extract such information if one parameter such as stand height or stem

density is obtained independently and/or reliable relationships are established between vol-

umes and diameters of stems and branches for specific species of interest.
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4
CONCLUSIONS AND RECOMMENDATIONS

A two-part study of remote sensing data was undertaken at ERIM. The first part of our

study examined variations in multispectral signatures with time of day and with scan angle,

both of which limit the accuracy of machine classification under differing conditions. In the

other part of our investigation, we introduced the use of multi-aspect remote sensing and ex-

amined its potential for improving classification accuracy and extracting other information.

4.1 MULTISPECTRAL SIGNATURE ANALYSIS

Variations in multispectral signatures were examined to ascertain their magnitude, prob-

able causes, and restriction on the accuracy of machine classification as conditions deviate

from those of signatures extracted for classifier "training." This study was performed on a

uniquely suitable data set which provided repeated data obtained at widely differing times of

day over the same area-a predominantly agricultural site in Ingham County, Michigan.

Efforts were concentrated on studying the temporal variations in the signatures, and classifica-

tion tests were run to measure the degradation of results when signatures from the first time

of day were used in classifying other data taken at later times during the same day. Variations

in the signatures as a function of scan angle were also analyzed. Detailed comparisons were

made with the predictions of a radiative transfer model developed at ERIM, and also, in lesser

detail, with those of a canopy model for bidirectional reflectance also developed at ERIM.

4.1.1 CONCLUSIONS

(1) There are sizable variations in signature means as a function of both time of day and

scan angle.

(2) A radiative transfer model developed at ERIM was successful in predicting the trends

in the data at the shortest wavelengths, but it did not include all variations at the longer wave-

lengths. Two forms of deviation we found may be attributable to causes explicitly excluded

from this model:

(a) Brighter than predicted signals in the afternoon at all wavelengths may be caused

by higher overall illumination from high thin cirrus clouds (known to be present)

which reflect additional light to the ground-the model assumes no cloud cover.

(b) Additional anti-solar peaking, especially at longer wavelengths, is apparently

caused by bidirectional-reflectance properties of the surfaces which are not in-

cluded in this model--the model assumes Lambertian (perfectly diffuse) surface

reflectors.
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(3) Comparison of empirical data at longer wavelengths with predictions of a canopy bi-
directional reflectance model shows similar curve shapes, but the model predicts less vari-
ation than is observed in the data. However, model calculations were made for somewhat
different conditions and should have been more closely matched to the observed conditions for
a truer comparison.

(4) Time-of-day effects cannot be ignored. This is shown by the serious degradation
when signatures from the first run were used in classification tests on later runs: recognition
decreased from an average 84% correct on the first run at 9:33 AM LST to essentially 0%
correct by 11:33.

(5) Recognition was 0% correct in the afternoon when we had expected the accuracy to
rise again to approach that for morning runs having corresponding solar angles. The reasons
for this are not fully understood; however, we suspect uncorrected run-to-run calibration
changes for one or more channels, because X2 calculations indicated that use of fewer channels
(in particular, four calibrated in this study) would give better results with the current data.

(6) Some means of signature extension is needed to compensate for temporal variations
during large-area surveys with airborne scanner data.

(7) The behavior in the far-infrared (direct-thermal) radiance channel was analyzed
separately since different physical processes are involved. The temperatures rose during
the morning, then stayed roughly constant throughout the afternoon as anticipated, rather than
declining as does reflected radiance at shorter wavelengths. There was a clear-cut difference
between the temperatures of the various ground covers, with trees staying cooler than corn
and corn cooler than pasture-this is physically reasonable and expected. Finally, the tem-
peratures of surfaces within any one crop were not uniform, the sunlight side being slightly, but
definitely, warmer.

4.1.2 RECOMMENDATIONS

(1) We should further investigate the reasons for the 0% correct recognition on the after-
noon runs for which signatures from the first morning runs were used; we should also better
quantify the performance degradation. The classification tests should be repeated using a se-
lected subset of channels to determine whether there is any intrinsic improvement with fewer
channels, and careful attention should be paid to checking the calibration variations.

(2) Bidirectional reflectance effects should be studied in depth and related to the devia-
tions between the empirical data and predictions of the radiative transfer model, with calcula-
tions made under matching conditions.
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(3) Various signature-extension techniques, such as those studied under other tasks on

this contract, should be applied to the Ingham County data set, since it is ideally suited for the

study of temporal extension.

(4) A complete set of all 12 morning runs (of which only four were used this year) should

be digitized, at least for a subset of channels, and used as a basic data set for studying adap-

tive processing (or other temporal extension techniques), run-to-run calibration stability, etc.

4.2 MULTI-ASPECT REMOTE SENSING TECHNIQUES

Multi-aspect remote sensing techniques applicable to multispectral scanner data were

introduced and their use explored for improved classification performance as well as for in-

creasing the extractability of other information. Multi-aspect data were collected by the

ERIM M-7 multispectral scanner which was tilted so that its scan plane intersected the ground

at two or more different angles on successive passes over a scene. These data were placed in

spatial registration and analyzed. Theoretical calculations of reflectance also were made and

analyzed.

4.2.1 CONCLUSIONS

(1) The use of multi-aspect data offers some promise for improved classification per-

formance over that obtainable with conventional multispectral scanner data. The following re-

sults were obtained with multi-aspect data collected over an agricultural area in mid-August.

(a) Results with manually registered data from 69 agricultural fields showed slightly

more accurate and more consistent classification performance for multi-aspect

data than both tilt-only and no-tilt data for one selection of training and test fields.

(b) Results for switched roles of training and test fields in the manually registered

data were not as consistent, but the switch in roles was complicated by the use of

combined, instead of multi-modal, signatures.

(c) A classification map produced from six channels of machine-registered multi-

aspect data was examined and found to exhibit better overall qualities than six-

channel maps from either no-tilt or tilt-only data-classification patterns were

most spotty on the no-tilt map; mature trees appeared to be most accurately de-

lineated on the multi-aspect map; and overall delineation of corn fields was best

on the multi-aspect map. (Although corn fields were slightly better recognized on

the multi-aspect map, the tilt-only map had more false corn detections in trees.

In several no-tilt corn fields there were numerous false tree detections.)
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(d) A rank-ordering of the multi-aspect channels, based on average pairwise prob-
ability of misclassification between signatures, showed a balance between the
tilt and no-tilt channels: two tilt channels were assigned the highest rank while
no-tilt channels placed in the next several ranks.

(2) Maps of the difference between tilt and no-tilt signals in several channels and cor-
responding scatter diagrams of class mean signals exhibited interesting characteristics.

(a) On the 0.55- to 0.60-pm difference map, bare soil exhibited the greatest relative
signal increase in going from no-tilt to tilt geometry. The effect appears to de-
crease progressively as the fields contain more and more vegetation biomass
(and/or green vegetation).

(b) On the 0.62- to 0.70-pim difference map, vegetation signatures have more nearly
equal difference values, but bare soil has a markedly lower difference value.

(3) Theoretical multi-aspect reflectance calculations for corn canopies show that varia-
tions in canopy physical characteristics produce substantial changes in reflectances (although
extraction of such information from empirical data has not yet been attempted).

(a) The greatest effect was produced by the combination of a stressed canopy with
50% chlorotic leaves.

(b) Soil-color differences became important only when coupled with low plant den-
sities.

(c) Corn-tassel effects were discernible on multi-aspect scatter diagrams, and the
dispersion pattern of different tassel, soil, and density conditions in healthy corn
came closest to matching empirical scatter plots for tilt channel 9 (760 nm)
versus tilt channel 5 (570 nm).

(4) The canopy reflectance model predicted trends found in empirical data for a leafless
deciduous tree stand with snow-covered ground. The analysis was not completed, so the feasi-
bility of extracting information on forest stand characteristics (such as stand volume) was
neither established nor rejected; further work is recommended.

4.2.2 RECOMMENDATIONS

(1) Classification performance on the machine-registered multi-aspect data set should be
analyzed more completely than was possible here-owing to the late availability of the ma-
chine-registered data. For example, the degree of misregistration in the multi-aspect data
should be analyzed in comparison with typical ground-structure sizes in order to evaluate how
much such misregistration might be degrading both the cross-aspect entries in the signature-
correlation matrices and classification performance.
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(2) Additional analyses should be performed on multi-aspect signatures to better explain

observed signal patterns and dispersions, to form and enhance human intuitions useful in data

interpretation, and to explore signal combinations for extracting information on scene material

conditions.

(3) The feasibility study for extracting forest-stand characteristics from multi-aspect

scanner data should be continued and completed.
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Appendix A
SOFTWARE DEVELOPMENT

Five general computer programs were developed and used for this task. They are de-

signed to process digital multispectral scanner data or signatures within the ERIM multispec-

tral processing system. All except one employ the IBM-7094 computer system.

Program SMOOTH operates on data contained in a specified portion of a data file, averag-
ing over pixels within adjacent rectangles of a specified number of scan lines and pixels
(picture elements) per line. Its use reduces the quantity of data for subsequent processing; but
because it does so at a later stage than our usual averaging during analog-to-digital conversion,
it allows intermediate processing steps to be applied. It also can be used to coarsen spatial
resolution by averaging over an area larger than a ground cover's structure or some other
structure in the data (such as the skew or misregistration between channels which is possible
in multi-aspect data).

Program MERGE combines scenes from two data sets by producing a composite data vector
for each pixel. A one-to-one assignment is made of channel values in corresponding pixels
from an equal number of scan lines and pixels per scan line in each scene. This program was
used on this task to manually register data for the same fields from passes made at two differ-
ent view aspects. Matching starting points and field sizes in the data for each aspect were se-
lected by hand.

Program DESNAKE corrects for certain geometric distortions by shifting entire scan lines
left or right. Such shifting was used to compensate for loss of roll stabilization in the airborne
scanner data; this loss had caused straight roads under the plane's trajectory to follow snake-
like paths in the data (hence the program name "de-snake"). The program performs interpo-
lation between an arbitrary number of specified break-points along the flight path.

Program STEPLIN is a modification of the prior DIST program which calculates the pair-
wise probability of misclassification between all pairs of signatures in a set. It differs in using
the algorithm of the "best linear" classification rule, or optionally a divergence approximation
to the best linear rule, instead of DIST's quadratic rule. Hence, STEPLIN more closely
approximates the results of classifying with the linear recognition rule, and takes appreciably
less computer time-which for a large number of signatures represents a significant saving
since the number of pairs increases as the square of the number of signatures. This program,
unlike the others, operates on the ERIM CDC-1604 computer.

Program SIGCOM, used to combine signatures, employs a package of standardized signa-
ture manipulation subroutines developed for this and future signature analysis needs. Present
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capabilities include the following: combining signatures with various weighting options; multi-

plicative scaling of signature means and, optionally, the covariance matrix with a different

factor for each channel; adding a different constant to each channel mean; taking channel sub-

sets; and calculating the X2 fit of a data mean vector to a signature. Since standardized sub-

routines have been written to perform the mechanics of reading, printing, punching, storing,

and copying signatures, other programs and capabilities can be quickly added as they are

needed.
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Appendix B
AERIAL PHOTO METHODS OF ESTIMATING TIMBER VOLUME

B.1 INTRODUCTION

Aerial photography has proven to be a valuable tool for forest mensuration, chiefly as a

result of the development of photogrammetric techniques and the availability of high-quality

vertical photography. It is used both as a supplement and as a direct method for estimating

timber volume and other stand characteristics.

Prior to the introduction of aerial photography, ground methods were used exclusively to
collect inventory data. A great deal of money was expended in developing and refining these

techniques because these data formed the basis for a multitude of decisions concerning the

management of forest land. Numerous methods were developed and utilized, but basically the
estimation of standing-timber volume was accomplished by measuring the characteristics of
either entire forest stands (to provide a direct estimate of standing volume) or a representative

sample of individual trees. These estimates then were projected to estimate the volume of
large timber tracts. Each method offered specific advantages, and the use of one rather than
the other depended upon the requirements of the inventory.

When the concept of using aerial photography to predict volume was introduced, it appeared
to offer several distinct advantages and immediate uses: expensive field work could be sub-
stantially reduced, extensive areas or low-value timber could be inventoried economically,
measurements could be obtained much more rapidly, especially in isolated areas and areas
where weather conditions affected ground surveys. This saving in time either could reduce in-
ventory costs or the sampling intensity could be increased to provide greater accuracy.

With photography, as with ground inventories, two different approaches were taken to esti-
mate timber volumes -stand measurements and sample trees measurements. Again, each
aerial method offers particular advantages over the other and is similiar to its corresponding
ground method, except that the measurements used to estimate volume are obtained remotely.
The remainder of this section discusses and compares these two aerial-photo approaches to
timber-volume estimation.

B.2 VARIABLES USED TO ESTIMATE STANDING TIMBER VOLUME

Ground estimates of gross tree and stand volumes are based on measurements of basal
area, age, diameter at breast height (dbh), and merchantable and total height. Height, age,
and basal-area information provide the basis for determining stand volume, while tree volume
is estimated from dbh and merchantable height. Since not all these variables can be measured
directly from aerial photographs, a slightly different set of variables, capable of being mea-
sured directly from aerial photography yet still highly correlatable with gross volume, must
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be used. The three most common variables used to estimate standing timber volume from

aerial photography are total height, crown diameter, and crown closure. These variables can

be viewed as substitutes for merchantable height, dbh, and basal area, respectively.

Height

The height of a tree or a stand can be determined by using any or all of three methods:

(1) Measurement of photographic relief displacement

(2) Measurement of parallax-the difference in relief displacement between two stereo

photographs.

(3) Measurement of shadow length

The parallax method is most accurate and applicable to a greater variety of situations

than the other methods because dense forest stands and irregular topography make shadow

length measurements impractical, while relief displacement is difficult to measure when small

scales are involved or the base of an object is obscured. A further advantage in using parallax

measurements is that, on commonly available photography, trees and stands can be grouped

into 10-ft height classes.

Crown Closure

Crown closure, which is a measure of stand density, is expressed as a percentage of the

total ground area covered by a forest canopy. Three methods of measurement are most com-

mon: dot grid, density scale, and stereogram. An interpreter uses a dot grid to measure

crown closure by counting the dots that fall on tree crowns and comparing this number to the

total number in the sample area. Crown closure is estimated with a density scale and stereogram

by visual comparison between the area of interest and the known standard. The density scale

graphically portrays a variety of stand densities, while the stereogram method provides the

interpreter with actual photographic examples of stands that exhibit a variety of known densities.

The standard error of crown closure measurements is consistently less than or equal to 10%

[14].

Crown Diameter

Crown diameter is measured by using either a dot scale (with graduated circles to represent

a variety of tree crown sizes) or a wedge comprised of two diverging lines. The dot scale is

overlaid on the tree whereas the wedge is placed tangent to the crown for measurement. Tree

crowns can be classified into 5-ft diameter classes without difficulty [15].

Accuracy

The accuracy of these variables in predicting gross standing volume is dependent on their

correlation with volume and their ability to be measured from aerial photography. Of the three

predictor variables, total height exhibits the highest correlation coefficient with volume.
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Crown closure is a close second, while crown diameter is a poor third. These variables, and
transformations of them, form excellent models for estimating standing-timber volume. The
standard error of estimate for aerial-stand-volume tables constructed by S. F. Gingrich and
H. A. Meyer is 25% [16 . A standard error of estimate of 17% has been obtained by others.

B.3 AERIAL METHODS OF ESTIMATING GROSS STANDING TIMBER VOLUME

B.3.1 AERIAL TREE VOLUME TABLES

Aerial-tree-volume tables estimate the volume of individual trees by measuring tree
height and crown diameter (crown area). Several other variables that express the effects of
competition by neighboring trees are sometimes utilized, but the most useful are direct mea-
surements of individual tree characteristics [171.

These tables are constructed by determining the volume of a representative sample of
trees from ground measurements and then correlating these volumes with photo-measurements
of the same trees. Once the relationship between photo-measured variables and volume is
determined, the volume of unknown trees can be predicted by substituting their photo-mea-
sured variables into the previously determined regression equation and solving for the inde-
pendent variable volume.

Volumes of large forested areas are estimated using aerial-tree tables by stratifying the
forest, allocating sample plots, and measuring individual trees within these plots. The sample
data collected are then projected to predict the volume of the entire area. Volume is usually
expressed in gross cubic feet with no cull estimation.

B.3.2 AERIAL STAND VOLUME TABLES

Stand volume tables are constructed using the same procedures except that stand char-
acteristics (crown closure, stand height, and stand crown diameter) are utilized as independent
variables. Volumes of a representative sample of stands that exhibit a variety of density, height,
and crown characteristics are determined from ground measurements and then correlated with
their photo-measured variables by regression analysis. The stand method incorporates an-
other variable, crown closure, into the model. The variables of height and crown diameter are
still utilized, but they are redefined to describe characteristics of entire forest stands. Stand
height and stand crown diameter can be viewed as an average of individual (dominant and co-
dominant) trees comprising the stand (e.g., the average of the three tallest trees for stand
height) [16].
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B.3.3 OTHER METHODS

Several other aerial methods exist for estimating standing-timber volume. In one, stereo-

grams that portray a variety of stand conditions of known volume are used to estimate volume

of unknown stands by visual comparison. In another, existing tree and stand tables based on

ground measurements are converted to aerial tables by using photo-variables to estimate the

independent ground variables on which the tables are based. Since these methods, based in part

on subjective decisions, are either not as accurate or not as statistically sound as those men-

tioned earlier, they will not be discussed further.

B.3.4 COMPARISON

Both tree and stand aerial methods provide an estimate of gross standing-timber volume

solely from photographic measurements, once the initial volume tables are constructed. How-

ever, most aerial volume tables, especially those based on the earliest aerial methods, use

the stand approach-not the tree concept-to estimate volume. Several valid reasons account

for the preferred use of stand tables.

First, tree tables require the use of large-scale photography in their construction and

application in order to accurately identify and measure all trees within a sample plot. Since

large-scale photography of most areas is not available, special flights to collect such photog-

raphy are necessary. When the use of aerial tables was first proposed, the availablility of

high-quality large-scale stereo photography was a limiting factor in their application. Another

limitation was the difficulty encountered in accurately determining the photographic scale of

this photography, especially in isolated areas, because few benchmarks appear within the field of

view on scales applicable to tree-volume tables. Also, the tables are limited to forest types

that do not grow in dense stands-such stands inhibit identification and measurement of all

trees in the sample plot. An excessive number of photo-measurements is necessary in the

application of tree-volume tables, and a well designed statistical-sampling system must be

utilized for accurate prediction of standing volume.

Since aerial-stand tables, on the other hand, are not affected by these limitations, their

construction was more prevalent. Because it is not necessary to see or measure every tree,

small-scale photography can be used as the basis for photographic measurements. Federal

agencies such as ASCS, SCS, and the Forest Service procure photography applicable to the

stand-table method on a regular basis; therefore, special photographic missions are not a pre-

requisite. While scale determination is difficult on large-scale photography, it is facilitated

on smaller-scale photography by the presence of numerous cultural and geographical features.

Finally, stand tables not only require fewer photo-measurements in their application, but also

provide direct estimates of volume per acre.
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